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The Rate Variability-Distortion (VD) Curve of
Encoded Video and its Impact on Statistical
Multiplexing

Patrick Seeling and Martin Reisslein

Abstract

Encoded video is expected to contribute a significant portibthe load on future communication
systems and networks, which often employ statistical mlelting. In such systems, the number of video
streams that can be supported depends both on the meanebgatell as bit rate variability of the
video streams. At the same time, the utility (revenue) ehifnem video streaming depends both on the
number of supported video streams as well as their qualgl.lén this paper we examine the interplay
between video quality, traffic variability, and utility fapen-loop encoded video. We introduce thage
variability-distortion (VD) curvewhich relates the bit rate variability to the quality levdlan encoded
video. We find that the VD curve generally exhibits a chandstie “hump” behavior of first increasing,
peaking, and subsequently decreasing variability foreasing quality. We examine the impact of video
content characteristics, encoding parameters, and t&fiiwothing on the VD behavior. We describe a
methodology for assessir@) the set of the video streams that can be supported with atatatiquality
of service requirement, andi) the utility earned from video streaming over a link. This haetology
is based on the rate-distortion and rate variability-digio characteristics of the videos. We find that
the statistical multiplexing gain and the utility as a fuontof the video quality level typically exhibit a
“hump” similar to the VD curve.

Index Terms

Network utility, statistical multiplexing, variable bitate video, video content, video quality, video
traffic, video streaming.

I. INTRODUCTION

Video streaming is expected to play a dominant role in futmdtimedia applications, including in
multimedia applications that are offered over communisatystems and networks. For the transport over
communications systems and networks the video is typicaippressed (encoded). Generally, video can
be encodedi) in an open loop with a fixed quantization scale, which result&irly consistent video
quality but variable bit rate (VBR) video traffic, i) in a closed loop by adjusting the quantization
scale, which can keep the bit rate close to a fixed target ldtlat typically results in quality variations
in the video [1]. We note that video can also be encoded witliabdity into multiple layers. Broadly
speaking, a given layer is either encoded with an open logivefairly constant quality and variable bit
rates, or with a closed loop to give a close to constant bé ssud variable quality. Also, the video can
be encoded with fine granularity scalability, which permits fine granular scaling of the video bit rate
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and quality. In this paper we focus primarily on non-scadafsingle layer) video encoded with a fixed
guantization scale. However, our methodology and resuéisalso applicable to variable bit rate layers
of scalable encodings.

In order to transport the variable bit rate video traffic atsmewbly high levels of network utilization,
the video streams are typically transported with some sbatatistical transport scheme, which may
occasionally drop (lose) some of the video traffic. Thesestiedi transport schemes emplsiatistical
multiplexing i.e., they exploit the fact that the peaks in the traffic of siraultaneously ongoing streams
do typically not collude. The number of simultaneous stre#ims can be supported by a given network
depends on the statistical characteristics of the vide@icdrand the tolerable loss rate. Importantly, the
utility (i.e., revenue) earned from streaming videos over a givéwark typically not only depends on
the numberof simultaneously supported streams, but also thaality. Clearly, the utility increases by
increasing the number as well as the quality of the streamiscdin be simultaneously supported with a
given network capacity.

Assessing the utility of a network providing a video streagniservice with statistical multiplexing
thus requires the joint consideration of the number of supgdostreams as well as their quality levels.
Importantly, the number of streams that can be supporteld stitistical multiplexing depends on the
mean (average) bit rate as well as the variability of the &ié.r For given mean bit rates the number of
supported streams decreases as the variability of the tiaffieases. Intuitively, with higher variability
it is more likely that colluding traffic peaks exceed the netwoapacity and result in losses.

Rate-distortion curves, which have been intensively stidsee Section II) relate the size (in bit) of
an encoded video frame to its quality and can also be useddte rhe average bit rate of a sequence
of video frames to the average video qudlitConsidering mean bit rates and quality levels, however,
is insufficient to assess the utility of video streaming withtistical multiplexing since the number of
supported streams also depends critically on the bit rat@hity.

To facilitate the assessment of the utility of video straagnwith statistical multiplexing we introduce
and examine in this paper thate variability-distortion (VD) curvewhich relates the bit rate variability
of an encoded video sequence to its average quality levelfiMlethat for a variety of transform video
coders, the VD curve exhibits a characteristic “hump” bébrav.e., the bit rate variability first increases,
peaks, and subsequently decreases as a function of the quddity, as illustrated in Figs. 1 and 2 which
show the coefficient of variation of the frame sizes (in bit) sasunction of the PSNR video quality
for scenes from the movi&erminatorand a video of a football game. We also find that this hump is
most pronounced for low motion video scenes (MC | in the figuses detailed shortly) and for long
video sequences consisting of many scenes. We study thecfropshe VD behavior on the statistical
multiplexing of video streams and the utility obtained fr@argiven network capacity. We find that the
statistical multiplexing gain and the utility typically aeh a maximum at a quality level that is in the
vicinity of the quality level where the VD curve peaks. Thus @xistence of the hump phenomenon is
of significance for the communication systems and networkiogain, as well as for content providers

Istrictly speaking, rate-distortion curves relate bit rate to distortion (wiyedéiortion is inversely related to quality), but it

is quite common to refer to the curves relating bit rate to quality as rate-distatioves and we will follow this practice in this
paper.
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who have to make a rate—quality trade-off decision.

This paper is organized as follows. In the following sectiom meview related work. In Section Il we
describe the set-up of our study of the VD characteristicermfoded video and introduce our notations.
We present a detailed study of the VD characteristics of dpep encoded video in Section IV. We first
examine the effects of intra coding and inter coding, as a®lihe effects of the different frame types and
Group of Picture (GoP) patterns on the VD characteristics efiss of different levels of motion. We then
examine the effects of video traffic smoothing within indivéd scenes and over full length videos on the
VD characteristics. In Section V we examine piecewise agpration models which give an estimate of
the full VD curve from a few sample encodings. The impact of W2 characteristics on the statistical
multiplexing of video streams over a bufferless link is $&adin Section VI. In Section VII we consider
the utility earned from the streaming with statistical ripléxing over the bufferless link considered in
the previous section. Our main conclusions are summarizetection VIII.

I[l. RELATED WORK

Video streaming over networks has received a great dealteftain over past two decades, see for
instance [2], [3]. Our study relates to the following thre@imlines of research(i) research on the
rate-distortion (RD) characteristics of encoded vidgo), research on the analysis and modeling of video
traffic, and(ii:) research on video traffic management mechanisms. Reseathke &D characteristics of
encoded video examines the relationship between the (nieargte and the video quality (and encoder
guantization scale), see [4], [5] for tutorial overview big area of research. The two main approaches
that have been employed in RD research are analytical nrmgdelind empirical modeling. Analytical
modeling, such as pursued in [6] attempts to derive matheatdbrmulas for the RD behavior in terms
of the statistics of the source video and the properties @feticoding mechanism. Empirical modeling,
as studied in [7], [8], strives to approximate the RD curve ibterpolating between a set of sample
points. A unified RD analysis framework, which builds on anlgsia of the percentage of zeros in the
transformed video frames in conjunction with rate curve elimg) is developed in [9]. The modelled RD
characteristics are typically used to control the mean dii¢ of video encoders [10], [11] and can also



be used for allocating mean bit rates to video streams fawar&ttransport [12], [13]. Our study differs

from this literature on the RD characteristics in that wensixee the relationship between the variability
of the bit rate on the one hand, and the video quality (and tig&tion scale) on the other hand. In other
words, the existing RD studies have focused on the first ondgissc of the video traffic, whereas our
focus is on the second order statistic (which we study in apigcal manner).

The statistical analysis of video traffic and the developméntideo traffic models has also received
significant interest, see for instance [14]—[22]. This linenfrk is primarily focused on obtaining insights
into the statistical properties of the traffic (including thi¢ rate variability) of a given video encoding
(for a given, typically fixed quality level or quantizationade) and developing analytical models for the
observed statistical properties. In particular, the foisuen finding parsimonious models that allow for
the characterization of video traffic with a small number ofdeloparameters. In contrast, in this paper
we examine the bit rate variability of the video as a functadrthe quality level/quantization scale and
demonstrate that the quality level of the video has a prafldmpact on the video traffic statistics, which
to the best of our knowledge has not been reported in detfordne

The related area of research on video traffic management meoigamay be viewed in terms of
the following three different problem sub-areds) traffic management for a single video strea(t)
traffic management for a group of multiplexed streams of fixedlityu (quantization scale), an¢r)
traffic management that adapts the video quality while camgid multiple multiplexed streams. The
transmission of a single video stream is considered by théiext [23]-[27], which strive to maximize
the video quality of the considered single stream subjethéoavailable network bandwidth and suffered
packet losses. The studies [28]—-[36] represent a sampleedathe body of literature on the sub-area of
traffic management for a group of multiplexed streams of fixedlitju The main focus of this sub-area
is to maximize the number of video streams with a given (knotxaffic pattern that can be supported
subject to a given amount of network bandwidth and a maximermmgssible loss. Whereby the considered
video streams are pre-encoded with a particular qualitgllev quantization scale that are not considered
as independent variables in these studies. In contradtjsrstudy we examine the multiplexing of video
streams as a function of the quality level/quantizatioriesc@ur investigations indicate that the quality
level of the video critically affects the multiplexing befar; this effect has been largely ignored to date.

The sub-area of traffic management that adapts the qualityevebihsidering a group of multiplexed
streams is generally more closely related to our work inWetlso consider multiple multiplexed streams
and examine the multiplexing behavior as a function of thdewi quality. The early studies [37]—[39]
considered this problem sub-area at a conceptual levebutitbonsidering in detail the dependency of
the traffic statistics and multiplexing behavior on the vidgality which is the focus of our study. Error-
resilience mechanisms that mitigate the drop in quality umultiplexing losses are developed in [40].
Joint source-channel coding in the context of multipleXivgges is examined [41]. The study [42] presents
a system architecture for a streaming service which adgptshanges the quality level of the streamed
video in response to user feedback while the streaming isinggnd examines the achieved multiplexing
performance and user perception rating. Our study of thisttal multiplexing and the utility of variable
bit rate video streaming complements this literature byowedng the fundamental relationships between
the rate variability produced by the open-loop encoder fiiernt quantization scales and the associated



achievable multiplexing gains and network utilities.

We note that the conceptual aspects of the pricing of videdces and the utility of video streaming
are discussed in [43]-[47]. Also, a recent study [48] exa&dithe maximization of the utility a given
user obtains from receiving a video stream. Our utility gtud Section VII differs from [48] in that we
consider the utility that a service provider earns from ipléking multiple video streams over a given
network bandwidth.

Ill. M ETHODOLOGY OFRATE VARIABILITY -DISTORTION STUDY

For our evaluation of the rate-variability-distortion cheteristics of encoded video sequences, we
employ the setup illustrated in Figure 3. As example videmssefor this study we selected scenes

Original Scene detection Encode segment
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H.264

Fig. 3. Outline of the evaluation setup.

from the two moviesStar Wars IVand The Terminator and aFootball game recording in QCIF format
(176 x 144 pixels). In addition, we consider three of the well-knowsttsequences, nameyarphone
and Claire in the QCIF format andParis in the CIF (352288 pixels) format.

We used publicly available scene detection software forditermination of scene boundaries. Scene
boundaries were detected based(fndirector cuts (i.e., the abrupt change of scene contentdestwwo
consecutive frames), andi) fades between scenes (i.e., the dissolving of one scendhatéollowing
scene using several frames). We visually verified the salesitenes for correctness of scene boundaries.

In general, video content can be classified according to akeeiteria, see for instance [49]- [50].
To illustrate the impact of the video content on the VD chadstics we consider the level of motion
(content dynamics) in the video, which is widely consideee#ley characteristic of video content. We
classify the content of a video scene according to the lef/@hation into five motion classesanging
from motion class | for a low level of motion to motion class ®rfa high level of motion. For each
motion class we selected a representative scene from e@deb far our study. An overview of the selected
scenes is presented in Table I.

We consider a variety of Group of Pictures (GoP) patterns, lwhie shown in Table Il. Note that
pattern 7 corresponds to the widely adopted 'standardepatfor the video coding, we use the reference
implementations of the MPEG4 encoder, the H.264/AVC develmmersion 6.1e [51], and the wavelet
encoder presented in [52]. We used the single layer encatidghe simple profile of MPEG4, encoding
each individual frame as single video object.

A. Definition of Traffic and Quality Metrics

In this section we provide the definitions of the traffic and guyahetrics used throughout this paper.
Let D, and D, denote the number of pixels in the horizontal and verticatations in a given video
frame (e.g., for QCIFD, = 176 and D, = 144). Letn, n = 0,..., N — 1, denote the position of the



TABLE |
OVERVIEW OF CONSIDERED SCENES

[ Video | Scene #| Length (frames)| Motion Class| Description
Football 298 227 I Intel logo with moving background (trailer).
Star Wars IV | 274 443 I Princess Leia’s hologram pleas for help.
Terminator 384 520 I Talk between two humans in a tunnel.
Football 299 367 I NFL logo animation.
Star Wars IV | 117 391 I Slow zoom on R2D2 and C3PO marching in the desgrt.
Terminator 462 275 I Terminator makes a call.
Football 557 266 1T Subway train GAP commercial.
Star Wars IV | 115 112 11 Darth Vader gives orders and walks away.
Terminator 628 140 Il Gas truck makes U-turn.
Football 184 111 \Y Robot slides to camera (trailer).
Star Wars IV | 165 89 \Y R2D2 is captured by sandpeople.
Terminator 262 69 v Car breaks through entrance doors.
Football 336 86 Vv Camera follows running player.
Star Wars IV | 632 46 \% Fight in a bar on Tatooine.
Terminator 441 253 \% A picture burns.
Carphone 1 382 Il Talking man inside car.
Claire 1 494 I Woman talks in front of blue screen.
Paris (CIF) 1 1065 I Man and woman are talking.

TABLE I

EVALUATED GOP PATTERNS FORDCT-BASED ENCODINGS

GoP pattern| Length | Pattern

0 1 ...

1 12 IPP ...

2 30 IPP ...

3 scene | IPP ...

4 12 IBP ...

5 30 IBP ...

6 scene | IBP ...

7 12 IBBP ...
8 21 IBBP ...
9 scene | IBBP ...
10 12 IBBBP ...
11 12 |IBBBBBP...

given video frame in a given video sequence that consisf§ éfames. Each video frame is divided into
M macroblocks (MB) ofl6 x 16 pixels (e.g.,M = 99 for QCIF) for DCT based encoding. The DCT
transformation is performed on a block (i.e., subdivisidraanacroblock) of8 x 8 pixels. We denote the
guantization scale of the encoder yThe possible values far vary fromg =1,2,...,31 for MPEG4
andg =1,2,...,51 for H.264/AVC.

1) Traffic Metrics: We denote the size (in bit) of theth encoded video frame for quantization scale
q by X;I. The mean frame size of an encoded video sequence is defined as

. 1 N-1
X,=+ nzo Xz 1)
We let o, denote the standard deviation of the frame size defined as
Nl o
%=\ N1 > (XE - X2 (2)

n=0



We primarily employ the coefficient of variation [53] defined as

(o)
q Xq

as the measure of variability of the frame sizes (the vditglof the bit rate of the encoded video). We
note that an alternative measure of the variability of tlzemie sizes is the peak-to-mean frame size ratio
defined as
maXOSn_SN_l X% ‘ (4)
Xq

The peak-to-mean ratio, however, can be affected by a sirglelarge video frame (i.e., an outlier). This

problem is avoided by the coefficient of variation of the fraseesCoV,, which gives the normalized
averaged deviation of the individual frame sizes from thamfeame size and is therefore widely employed
in performance evaluation [53], [54]. We denote the maxinmzoefficient of variation for a given video
sequence as

CoVipax = mqax CoVj, (5)

and denotey,., for the quantization scale that attains this maximum, yg.x = argmax, CoV,. We
similarly defineCoViuim and gmin.
We define the aggregated frame size trace with aggregatiehdew. > 1, as
(n+1)a—1

4 1 4 _
Xyt == > Xj, for i=0,...,N/a—1, (6)
j=na
i.e., the aggregate frame size trace is obtained by aveyatji@ original frame size trac&,, n =
0,...,N — 1, over non—overlapping blocks of lengthframes.

When different frame types exist, these can be combinedrta the group of pictures (GoP). Frame
types are intra coded (I) frames, predicted (P) frames, aitiréctional predicted (B) frames. The latter
two frame types are also referred to as inter coded framestyenever we refer to an explicit frame
type, we denote the type by its abbreviation in the subs¢eigt., X p for the size of a P frame).

2) Quality Metrics: We denote an individual pixel value (an 8-bit value for thenilbance) in the
original (uncompressed) video frame By (z,y) and its encoded and decoded counterpartfbiz, ),
with0 <z <D, —-1and0 <y <D, — 1. We use the peak signal to noise ratio (PSNR) as a measure
for the objective video quality. The PSNR qualifyf, of framen encoded with quantization scaleis

defined as
2552 - D, - D,

_ D,— :
St S Fala,y) — fi(2,y))
We apply the PSNR only to the luminance (Y) component of an idda frame, as the human eye

@7, =10-logyg (7)

is most sensitive to this component [55]. We calculate theragye objective quality for a given video
sequence ofV individual frames as

1 N-1
Q= ;Q% (®)

We note that several more sophisticated approaches fotathelation of the objective video quality (i.e.,
algorithms that take the human visual system into condligeaexist, but the PSNR is widely used as it
is computationally simple a gives generally a reasonabtydgmeasure for the perceived quality [56].



3) Entropy: As measure for the complexity of an individual video frames @employ the Shannon
entropy. The complexity for each frameis calculated as entropy of the individual byte valuégz, v),

given as
255

H, =~ Y P[F)]log, P[F, ©)
F,=0

where P[F}] denotes the sample probability of byte vallg with F;, € {0,1,...,255}, for all D, - D,
byte values. We denote the coefficient of variation of theagtrvalues of the frames, n =1,..., N,
of a video sequence b§oVy.

We use the coefficient of correlation as measure of (linegpgddency, defined as

M _
Do — o St TmYm — T
z,y —
M — M _
\/ﬁ 2 m=1(Tm — l‘)z\/ﬁ > me1 (Um — §)?

for a set of data points denoted by, andy,,, m=1,..., M.

(10)

IV. RATE VARIABILITY -DISTORTION CHARACTERISTICS OFOPEN-LOOP ENCODED VIDEO

In this section, we examine the coefficient of variation asrecfion of the video quality, i.e., the VD curve,
of open-loop encoded video. Current video coders are mbsthed on the Discrete Cosine Transform
(DCT). The transform coefficients are quantized to further cedthe size of the video frames at the
expense of the loss of video information (and thus reduceégoviquality). The combination of these
two encoding mechanisms is commonly referred to as intréngoolr texture coding. In addition to intra
coding, current video coders typically exploit temporapéeledencies between consecutive video frames
by encoding only movements or differences between coniseciutames, which is referred to as motion
estimation and compensation or inter coding. To examine/fbecurve in detail, we first focus on intra
coding and subsequently expand our study to include intdingo

A. Intra Coding

In this section we examine the rate variability-distortiMD) behavior of intra coded video and study
the correlation between the VD behavior and the entropy efvideo. In Figs. 6 and 7 we plot thé¢D
curves, i.e., the coefficient of variation of the frame sizeésV, as a function of the PSNR video quality,
for the Terminator and Football scenes. We observe that the intra coded videos exhibit acieaistic
hump in the VD curve, although the magnitude of eV as well as the change in tliéoV are smaller
compared to the encoding employing both intra coding aref iodding (see Figs. 1 and 2). Nevertheless,
the C'oV varies approximately between 0.1 and 0.22 for the motioascl® scene fronThe Terminator
and between 0.14 and 0.3 for the motion class Il scene ffoatball. As illustrated in Fig. 8 for scenes
from The Terminatorwe also observe a hump in the VD curve for wavelet based émgodlthough the
overall level of the variability is lower than with the DCT $&d encoding.

To examine the origin of the hump phenomenon in the intra doddeos, we study the correlation
between the rate variability and the entropy of the raw (omm@ssed) videos. More, specifically, we study
the correlation between the coefficient of variation of trenfe entropie€’'oVy and elementary statistics
of the coefficient of variation of the frame sizé®V,. We consider the following elementary statistics:



0.25 0.3

0.2 o N 0.25
0.2
_ 015 N .
I T, g 015 =
. = TS R - O RIS St b SV L
* . ] ey 01 P R K : = ‘,;4;;
0.05 g S i 0.05 [ ’§
0 0 S T S —
25 30 35 40 45 50 25 30 35 40 45 50
PSNR PSNR
Scene 262, MC IV —— Scene 462, MC Il Cl Scene 299, MC Il —— Scene 336, MCV -8
Scene 628, MC IIl - Scene 384, MC | ---=-- Scene 184, MC [V -—-x--— Scene 298, MC | ---=--
Scene 441, MC V *oos Scene 557, MC Il - oo
Fig. 4. VD curves for intra coded scenes using DCT basdy. 5. VD curves for intra coded scenes using DCT based
MPEG-4 fromThe Terminatar MPEG-4 fromFootball.
0.4 0.14
T
035 /#/ o 012 /'//4—0\4‘ e
0.3 P —— =N o1 e N
0.25 ' fﬁ -
0.08
3 0.2 ; 2 a
0.15 © 0.06
W**S‘*'*‘ *f/
0.1 = S e 0.04
I L S
0 - B
25 30 35 40 45 50 55 0
PSNR 25 30 35 40 45 50 55
PSNR
Scene 115, MC lll —— Scene 165, MC IV a
Scene 117, MC Il - Scene 274, MC | ---=-- Carphone, MC Ill —— Paris, MC | - oo
Scene 632, MCV —x-- Claire, MC | ——x-—

Fig. 6. VD curves for intra coded scenes using DCT basedy. 7. VD curves for intra coded test sequences using DCT
MPEG-4 fromThe Terminator based MPEG-4 fronfrootball.

(7) the largestC'oV,, i.e., CoViax as defined in (5)(i7) the range of the&oV, i.e., CoVinax — CoViin,
and the standard deviation of tii&V,. The coefficients of correlation between each of the columtis wi
the elementary statistics of th@oV;, and theCoVy column (calculated according to (10)) are all above
0.84. This indicates a relatively strong dependence of thiahitity of the encoded frame sizes on the
variability of entropy of the uncompressed source video. &y thus conclude that the origin for the
VD behavior of the intra coded video lies in the complexitytioé individual video frames.

To visualize this dependence we plot in Fig. 9 the frame siZe€arphoneencoded withg = 15
and the corresponding frame entropy foarphone We observe that typically video frames with a high
entropy result in large encoded frame sizes and that thabiéity of the entropy of the source video is
reflected in the variability of the encoded video frames.

B. Inter Coding

In this section we examine the VD behavior of video encodedguistra coding together with inter
coding. We initially study the VD behavior for the GoP pattét, which is widely considered in video
studies. We also initially consider encodings where ale¢hframe types are encoded with the same
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TABLE Il
ELEMENTARY STATISTICS OF THE VARIATION OF THE INTRA CODED FRME SIZESCoV AND THE COEFFICIENT OF
VARIATION OF THE ENTROPY OF THE UNCOMPRESSED VIDEO FRAMES 0V . THE CoV STATISTICS ARE HIGHLY
CORRELATED TO THE ENTROPY VARIATIONC' oV .

Movie Scene| MC | CoViax | CoVimax — CoVmin | Std. Dev.CoV, | CoVy
Football 298 [ 0.037 0.021 0.007 | 0.007
299 Il 0.292 0.151 0.046 | 0.078

557 | 1l 0.116 0.057 0.014| 0.057

184 | IV 0.116 0.059 0.016 | 0.019

336 \% 0.086 0.044 0.011| 0.019

Star Wars IV 274 I 0.041 0.027 0.008 | 0.003
117 Il 0.319 0.280 0.097 | 0.232

115 1 0.372 0.140 0.048 | 0.204

165 | IV 0.113 0.077 0.020 | 0.013

632 V 0.138 0.107 0.030| 0.031

The Terminator 384 [ 0.049 0.033 0.009 | 0.004
462 Il 0.119 0.075 0.025| 0.048

628 | |l 0.124 0.087 0.025 0.02

262 | IV 0.223 0.126 0.033| 0.069

441 \Y, 0.117 0.035 0.012 | 0.075

Test Sequence| Carphone| Il 0.123 0.051 0.017 0.01
Claire I 0.030 0.010 0.002 | 0.007

Paris I 0.025 0.013 0.003| 0.001

guantization scalg. We then examine the impact of different GoP patterns an@rdifit quantization
scales for the different frame types.

In Figs. 1 and 2 we have plotted the VD curves of fferminator and Football scenes encoded in
MPEG-4. Similarly in Figs. 10 and 11 we plot the VD curves of the segjuences encoded in MPEG-4
and H.264. The maximum coefficient of variatiéivV,,.x, the quantization scale attaining this maximum
gmax, and the average PSNR quality at this quantization sGale, for the MPEG-4 encodings are
summarized in Table IV. From a close inspection of Figs. 1, 2,d@ 11, as well as Table IV, we
observe that the scenes with motion class | exhibit by famtlest pronounced peak of the coefficient of
variationCoV', whereas the scenes with motion class V exhibit the smadkst. The other motion classes
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lie in between these two extremes. For these other motissetathere is again an ordering where the
lower motion classes attain high€iol” peaks, although the differences between these peaks atieebi
small compared to the wide gap between the peaks for the mokisses | and V. All VD curves exhibit
the characteristic hump behavior whereby the variabifigréases with decreasing quality, reaches a peak,
and then drops off as the quality decreases further. Theseatypehaviors of the VD curve are further
confirmed by the VD curves of the test sequences in Figs. 10 anwHith demonstrate that both the
MPEG-4 and H.264 encoders produce the characteristic humavioehof the VD curve. We observe
that the VD curve for H.264 is smoother than the curve for MPE®Aich may be due to the various
enhancements in H.264 over MPEG-4.

To explain these VD characteristics of inter coded videohaee first examined whether there is strong
connection between the entropy of the uncompressed vidédhencoefficient of variation of the frame
sizes. Specifically, we have encoded the video scenes usingp&érn 3, i.e., the first frame of the
scene is intra coded and all subsequent frames are inted cuide respect to the preceding frame. We
compared this variability of the frame sizes with the emyropthe difference in the pixel values between
successive frames. That is, we calculated the entropy ofitfeeehcesF,, (z, y) — F,,—1(z,y) for each of
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TABLE IV
MAXIMUM COEFFICIENT OF VARIATION OF FRAME SIZE C'0Vinax, QUANTIZATION SCALE ATTAINING MAXIMUM Gmax, AND
QUALITY AT MAXIMUM  Qg,..... FORMPEG-4ENCODINGS WITHGOP PATTERN 7 AND SAME QUANTIZATION SCALE FOR ALL
FRAME TYPES

Movie Scene GoP Pattern 7 |
MC COVmax Qmax quax
Football 298 | 2.35 22 26.85
299 Il 1.22 22 26.93
557 1] 1.03 16 30.92
184 IV 0.78 22 27.18
336 \% 0.33 22 26.49
Star Wars IV 274 | 1.26 16 30.08
117 1] 0.78 24 34.77
115 1] 0.96 18 31.37
165 IV 0.59 14 30.83
632 \% 0.42 9 35.75
The Terminator| 384 I 1.63 16 28.94
462 1] 1.17 22 28.83
628 Il 0.68 16 29.67
262 v 0.62 16 28.33
441 \% 0.37 14 29.42
Test sequencesg Carphone| lli 0.96 14 31.48
Claire | 1.63 10 37.04
Paris | 1.8 18 28.45

the framesn, n=1,..., N — 1, and then calculate the coefficient of variation of theseviddial frame

difference entropies. This calculation of the entropy is imadéd by the inter coding, which primarily
encodes the differences between successive frames. Weohageved that there is no strong correlation
between the coefficient of variation of the frame sizes andbpgtdifferences. From this observation we
may conclude that the inter coding introduces additionaiatian, which is not explained by the frame
complexity measured as entropy.

To obtain insight into the origins of the VD behavior we predd¢o examine the coefficient of variability
more closely and then examine the encoding of the differemhé types. The slope of the VD curve is
given by

dCoV, a;-)_(qfaq-)_((’z

_ 11

T 7 (11)
wherey’ denotes the derivative af with respect tag, The VD curve is increasing in if

U:] Xy >0y X;, (12)

and decreasing in if this inequality is reversed. We illustrate this behavior Scene 384 (MC 1) offhe
Terminatorin Fig. 12.

We observe that fog < 17, with increasingg the standard deviation of the frames sizes is dropping
relatively slower than the mean frame size such that inégu@l2) holds and the VD curve is increasing.
For ¢ > 17, the trend is reversed, i.e., the standard deviation of tamé sizes is dropping relatively
faster than the mean frame size with increasjngesulting in the decrease of the VD curve.

In the following, we further examine the different factordliilencing the VD behavior for GoP pattern
7.
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Fig. 12. Mean and standard deviation of frame size and derivativestasma function of quantization scajefor scene 384
from The Terminatorencoded with GoP pattern 7.

a) Average Sizes of Frame Typd3ue to the fixed GoP structure for the encoding, the differearé
types Intra (1), Predicted (P), and Bi—directional predigi@floccur at fixed positions in the encoded video.
The differences of the mean frame sizes of the three framestiypes contribute to the variability of the
encoded video. In Figs. 13,14, and 15, we illustrate the mesmd sizes by frame type for the scenes
from Football, Star Wars I\ and The Terminator

We observe that the difference between the different frypestis more pronounced in the low motion
scene 384 than in the high motion scene 441. In addition, weereb that the pronounce@oVi,.x
observed in scene 384 is located in the region where the meas sf the two predicted frame types
begin to remain roughly constant compared to the intra cddede types. For scene 441, where we do
not observe a pronounced hump in the VD curve, we do not obssrgh behavior, as the mean frame
sizes of all three frame types constantly decrease as th&igaigon scale increases.

The previous observations were made based on the mean frgmesiges without regard of their
contribution to the total video traffic. In Figs. 16, 17, and18 plot the fraction of the total video traffic
that is from a specific frame type.

We observe that in scerZ84 the fraction of encoded video data that is stored in the wffeframe
types decreases for the two predicted frame types, reaam@sraum where the”oV},,.« is located on the
guantization scale, and slightly increases afterwardghdrhigh motion scene frorfihe Terminatorwe do
not observe such behavior. Instead, the fractions of datedtin each frame type remain approximately
constant.

b) Variabilities of Sizes of Frame Type#n addition to the mean sizes, the variability of the sizes
of the different frame types (measured @sV’) influences the VD curve characteristics. In Figures 19,
20, and 21 we plot the coefficients of variation of the différisame types for scenes frofootball, Star
Wars IV, and The Terminator

From the plots shown here we observe that the | frame vatiglidilower than the variability of the
predicted frame types. We also observe that for P frames thxénmum variability typically decreases from
motion class | to V. We furthermore observe that the ovetall/,., of the scene is mainly governed by
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the P and B frames.

C. Impact of Different Quantization Scales for Differentfre Types on VD Characteristics

In this section we examine the impact of different quaniimascalesy for the different frame types.
We denotey;, gp, andgpg, for the quantization scales used for I, P, and B frames.ecsly. Initially,
we consider a constant offset between the quantizatiomescspecificallygp = ¢y +5 andgg = qp + 5
for gy = 5,6,...,20. We plot the resulting VD curves for the scenes fréootball, Star Wars 1\ The
Terminatot and the test sequences in Figure 22. We observe that with thiferent quantization scales,
the variability is overall steadily increasing with incsiag video quality. This behavior is in contrast
to the hump behavior observed in Figs. 1 and 2 for identicahtization scales for the different frame
types. We also observe that with both, identical and diffecriantization scales, motion class | has by far
the highest variability and motion class V has the smallesiability, with the variabilities of the other
motion classes lying in between. In addition, we observe tiha frame size variabilities with different
guantization scales are higher than with identical quatibn scales. This is because with the larger
guantization scales for the P and B frames, these framesnwaveeven smaller sizes compared to the |
frame sizes, which results in an overall increased vaitglof the frame sizes.

Next, we examine the impact of the magnitude of the diffeesnioetween the quantization scales for
the different frame sizes. Specifically, we consider the dbffiees 1, 3, 5, 7, and 10 (i.ep = q; + 1,
gp =qr+3,qp = qr + 7, andgp = q; + 10, and analogously fogg). In Figs. 23, 24, and 25 we plot
the resulting VD curves for the different motion classes M@nd scenes from all three movies. We
observe that with larger differences of the quantizatioales; the variability increases significantly for
higher video quality. The general level of the variabilityhigher for the low motion scenes than for the
high motion scenes, which corroborates our earlier obfiena In addition we note the difference in
the VD behavior for low and high motion scenes, i.e., thedase in the frame quantization differences
results in an almost exponentially increasing VD curve fightmotion scenes, whereas the VD curve for
low motion scenes becomes linearly increasing.
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D. Impact of Different GoP Patterns on VD Characteristics

In this section we examine the impact of different GoP patemn the VD curve. In Figs. 26, 27, and
28 we plot the VD curves for the motion classes I, lll, and Vd$oenes frontootball for the GoP patterns
defined in Table II. In Figs. 29, 30, and 31 we plot the scenes mitkion classes I, Il, and Il fronstar
Wars IV, and in Figs. 32, 33, and 34 for scenes fradime Terminator We employ identical quantization
scales for all frame types.  We observe that the VD curvesiembedium motion activity scene from

3 3
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Fig. 26. Effect of different GoP patterns for motion class | sceneffootball.

The Terminatorare representative of the curves for the low and medium maitiivity scenes. For the
high motion scenes, the different GoP patterns have an lbvegligible impact on the VD curves.

We observe from Fig. 33 that lengthening the GoP results iretovariability. This is primarily due
to the decreased influence of the always large sized | franmseshea GoP includes more frames. By
comparing the curves in Figs. 33 (a), (b), (c), and (d) we akesénat introducing more B frames into
the GoP pattern results in general in a minor reduction ofvirébility.

E. Effect of Frame Aggregation (Traffic Smoothing) on VD Charésties

In this section we study the effect of frame aggregation, thee smoothing of the video traffic over
multiple frames as defined in (6). Note that all the precedigpits were obtained for an aggregation
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Fig. 27. Effect of different GoP patterns for motion class Il scemenfFootball.

level of a = 1, i.e., by considering individual frames. We now consideaage of aggregation levels
from 1 through 36. Throughout this section we consider GoRepafZ and apply the same quantization
scaleq to all frame types. In Fig. 35 we plot the VD curves for the MC IMi& V scenes fronfFootball

for different aggregation levels. Similarly, we plot the VD curves foStar Wars IVand The Terminator

in Figs. 36 and 37, respectively We observe that the varighii greatly reduced by smoothing the
frames over an increasing numhbeof frames. With an increase from= 1 to 3 frames, the differences
between the | and P frames on the one hand, and the B frame® aihér hand, are smoothed out. As
a result the maximum variability is reduced from 1.633 to53.8or scene 384 and reduced from 0.373
to 0.186 for scene 441. Overall, our results indicate thaiahing over three frames approximately cuts
the variability in half.

When the aggregation level is increased further to one G@P, ¢ = 12 with the considered GoP
pattern 7), we observe again a decrease in the variabiligbtiut one half compared to an aggregation
of three frames. This is because the significant frame sizerdiites between the | frames and the
P frames are smoothed out by the aggregation. If the aggwagkvel « is further increased from a
single GoP to multiple GoPs there is typically a smaller réidacin variability, which diminishes with
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Fig. 28. Effect of different GoP patterns for motion class V scenefFootball.

increasing aggregation level In summary, we find that the video traffic variabiliyithin a given scene
is approximately cut in half by smoothing over 3 frames (itee | or P frame and the two adjacent B
frames in the considered GoP pattern 7). Smoothing over ofef@ther cuts the variability roughly in
half.

F. Effect of Scene Concatenation

In this section we examine the traffic variability acrossltiple scenesTowards this end, we concatenate
all five scenes from a given movie into one video segment aatthe VD curve for the thus obtained
video segment for different frame aggregation levelfor the five scenes fronfrootball, Star Wars 1V
and The Terminatorin Figs. 35, 36, and 37, respectively. We observe that theabdity is reduced by
smoothing over 3 frames. Smoothing over one GoP reduces tietbiity a little further. However, in
contrast to the above results for individual scenes, theatiah in variability is relatively small for the
video segment consisting of concatenated scenes. For aegagign level ofa = 24 frames, for instance,
we observe from Fig. 37 that the individual scenes give a maximvariability smaller than 0.2, yet we
observe from Fig. 44 that the maximum variability of the cdeoated scenes is approximately 0.75. This
high variability is mainly due to the variability of the frarsizes from scene to scene.
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Fig. 29. Effect of different GoP patterns for motion class | scenmf8ar Wars IV

Interestingly, we also observe from the comparison of Fig.with Fig. 37 that the VD curves
for individual scenes flatten out as the aggregation levéhcreases, whereas the VD curve for the
concatenation of scenes retains a pronounced hump aniveBlatteep slope even for large aggregation
levels. This is due to the behaviors of the mean frame sizeshenstandard deviation of the frames sizes
which when evaluated over the segment of concatenated sg@re pronounced slopes of the VD curve
(11).

Next, we consider the VD curves of the entire one-hour longegxts fromStar Wars The Terminator
and Football, which we plot in Figs. 41, 42, and 43 for the frame aggregatewel « = 1, the GoP
aggregation levet, = 12, and aggregation levels of multiple GoPs. We observe aga&irchiaracteristic
hump behavior of the VD curve, indicating that the behawiotrends observed in Fig. 44 for the
concatenation of 5 scenes extend to the concatenation efaddwindred scenes in a 1-hour video. We
observe also that the GoP smoothing tends to slightly shétgeak in the VD curve to higher quality
levels. Overall, the GoP smoothing of the long videos royghits the variability in half, compared to the
individual scenes where GoP smoothing roughly cut the kéitia down to a quarter (cf. Fig. 37). This
indicates that video traffic smoothing is quite effective @ducing the traffic variability within a given
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Fig. 30. Effect of different GoP patterns for motion class Il scemenfStar Wars IV

scene. On the other hand, traffic smoothing is less effeativeeducing the traffic variability of a long
video consisting of several scenes with distinct conteatratteristics. It appears hence beneficial to pay
attention to the scene structure of the video when streasrnmgpthed video.

We finally examine the effect of considering PSNR values of tharance as well as the chrominance
components in assessing the video quality. We demonstratgointly considering luminance and chromi-
nance PSNR values does not affect the overall tendencies amdctéristic behaviors of the VD curve
and the statistical multiplexing/utility. The only changea scaling of the (horizontal) quality axis in the
various plots. To illustrate this effect we plot in Figs. 44datb the VD curve of the concatenated scenes
from The Terminatorand the entire video. We plot these VD curves using two difiequality metrics on
a common dB scaldi) the PSNR values of the luminance component (denotdélSiyR-Y in the figures)
as used in the paper, aritf) a 4:1:1 weighing of the PSNR values of the luminance componeahtize
two chrominance components (denotedR$NR-YUVin the figures); the 4:1:1 weighing is inspired by
the 4:1:1 chroma subsampling in the videos. We observe fhenplots that independent of the considered
quality metric, the VD curves exhibit the characteristieripubehavior. The different quality metrics only
scale the curves in the horizontal direction. The specificirsgah the figures is due to the chrominance
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component having somewhat larger PSNR values than the lugenammponent for low quality levels,
as the quality level increases this difference in the PSNRegatliminishes.

Overall, we note that considering the PSNR values of the lunti@acomponent, as is common in
video studies, captures the main effects and characosrigfithe VD curve and the resulting statistical
multiplexing/utility behaviors and is therefore a readaleachoice for our study.
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V. VD APPROXIMATION FRAMEWORK

In this section, we introduce a piecewise approximatiomé&aork for the VD curve. The purpose of
the piecewise approximation is to estimate the VD curve lier éntire range of quantization scales from
sample encodings for a small number of quantization scales.

A. Piecewise Approximation Model

Our method employs piecewise power curve fitting for the edtion of the relationships between
(?) size of encoded video frame and quantization scaig,sandard deviation of size of encoded video
frame and quantization scale, ard) PSNR of encoded and subsequently decoded frame and quiamtizat
scale. Given the estimation of these three relationshigsapproximated VD curve can be calculated. Our
power curve fitting method is inspired by [7], [8], where sianitechniques are employed to approximate
rate-distortion curves.

Let ¢ denote a quantization scale setting for which the encoddebuilata is available (i.e., interpolation
points or samples) ang denote the quantization scale settings for which we use fipeoaimation
framework to estimate the values needed for the calculatfahe VD values (i.e., intermediate points).
The power curve representation of an arbitrary functfgn) (e.g., mean, standard deviation, or PSNR)
for a quantization scale settingis given as

flg)=a-d". (13)

Between a set of two consecutive interpolation poiptandg; we calculate the parametesisand 3 as
f(ai) f(ai)

Q= and ﬁ@ ;= loga . (14)
’ q? ’ w f(45)

The estimated values between the interpolation pajntndg; are then given as
f((j) = Q- ((j)ﬁi'j, Whereqz- < Cj < qj- (15)

We consider three different levels of estimation. On glggregatedevel, we estimate the mean frame
size X;, standard deviatiom;, and mean PSNR valu@; from the given interpolation points. On the
framelevel, we first estimate the individual frame siz&¢ and the corresponding frame qualiti@§ for
the intermediate quantization scale settigg$rom the thus estimated frame size and quality values we
calculate the (estimated) mean, standard deviation, and R@NRBs as given in Egs. (1), (2), and (8) for
eachq and intermediatg. Thirdly, we consider thenacroblocklevel, where we estimate the size of each

individual macroblocki, i =0,..., M — 1, of framen aSyZ,i. We estimate the frame overhead of frame
n asél, with
M—-1
0= X1 = >y, (16)
=0

for the given interpolation points. The frame sizes of thacroblocklevel are then calculated as

~ Mil ~ ~
XT=> "yl 4+l (17)
=0
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From these frame sizes we determine the coefficient of vania®in the two previous levels, but use
the frame level quality estimation for the VD curve estiroati

Intuitively, the accuracy of the piecewise power curve fgtiapproach varies with the number of
available interpolation points, i.e., more available ehogs yield better approximations. We follow the
reasoning in [8] and assume in the following that extremeabhlor extremely low quantization scale
settings, i.e.g < 5 or ¢ > 25, will most likely not be needed for general applications. Subsequently
focus in our evaluation only on the region®&K ¢ < 25. We consider three different numbers of available
interpolation points as outlined in Table V and examinertiseaitability for an approximation of the VD

TABLE V
INTERPOLATION POINTS FOR THE PIECEWISE POWER CURVE ESTIMATN.

| Samples] Interpolation points ¢;) |
2 q1=05,q2=25
3 q1:5,QQ:15,Q3:25
4 q1:5,q2:10,q3=17,q4:25

curve. We base our evaluation on the common GoP structwe gattern 7 in Table Il) and uniform
guantization scale settings for all frame types.

B. VD Approximation Results

In this section we present the VD approximation results far individual scenes frorRootball, Star
Wars IV, andThe Terminatoffor all three scenarios specified in Table V. In the following illustrate the
approximation for{) the coefficient of variation as function of the approximageelity, ¢) the coefficient
of variation as function of the quantization scalé&;)(the mean frame sizej«() the frame size variance,
and @) the mean frame quality aBSN R for the aggregatedevel. In Figs. 46, 47, 48, 49, and 50 the
approximation results for the scenes fréwotball are illustrated. Similarly, the results f&tar Wars IV
and The Terminatorare illustrated in Figs. 51, 52, 53, 54, 55 and Figs. 56, 57, 5868.
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Fig. 57. Aggregatedevel approximation results for sced€2 (MC II) from The Terminator.
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Fig. 58. Aggregatedevel approximation results for sce8 (MC IIl) from The Terminator.
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Fig. 59. Aggregatedevel approximation results for sce262 (MC IV) from The Terminator.
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We immediately observe that the approximation with only samples of the encodings does not capture
the VD behavior at all. We furthermore observe that even ¥athr interpolation points, the approximation
does not capture the VD behavior for most scenes very well fit e the more pronounced hump in the
VD curve for the low motion scenes is visibly worse than fog thigh motion scenes. In addition we note
that for the medium to high qualities, the estimation yieddsetter result and follows the more linear slope
closer. From the evaluation of the individual componentshef¥D curves we observe that for three and
four interpolation points the approximations for the indival statistics, namely mean frame size, frame
size variance, and mean frame qualilyqN R) are close to the original values. We compare the previous
results for theaggregatedievel in the following with the results for th&#ame level approximations in
Figs. 61, 62, 63, 64, and 65 for scenes fréootball, in Figs. 66, 67, 68, 69, 70 for scenes frddtar
Wars IV; and in Figs. 71, 72, 73, 74, 75 for scenes frdime Terminator
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Fig. 62. Framelevel approximation results for sce289 (MC II) from Football .
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Fig. 63. Framelevel approximation results for sce®®7 (MC Ill) from Football .
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Fig. 64. Framelevel approximation results for sced@&4 (MC IV) from Football .
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Fig. 65. Framelevel approximation results for sce386 (MC V) from Football .



1.3
1.2
1.1
> By TN
8 0.9 o . - §
0.8 g N
07 e I W
Original —— o NN
0.6 | 4Samples ——— B RN
’ 3 Samples -
05 2 Samples .= \
28 29 30 31 32 33 34 35 36
~ PSNR
a) Trace based approximation for CoV aR& N R.
14000
Original —+—
4 Samples ———
12000 3 Samples ~*-
2 Samples &
10000
- 8000
[
(]
= 6000
4000 S
2000 Mol .
0
5 10 15 20 25

c) Trace based approximation for mean frame size.

Quantization Scale

PSNR

65

1.3
1.2
1.1 o
Y
%\
1 .
>
8 0.9
0.8
0.7
Original —+—
0.6 4 Samples - |
By 3 Samples %
i 2 Samples &
0.5 .
5 10 15 20 25
Quantization Scale
b) Trace based approximation for CoV.
5e+07 —
Original ——
4.5e+07 i 4 Samples =
3 3 Samples --x---
4e+07 g 2 Samples & 8
3.5e+07 EK\
3e+07 ‘§\
8 25e+07 \\
2e+07 g
1.5e+07
le+07 u\ﬁ\&\!
!—-....”.__‘_
5e+06 %M
0
5 10 15 20 25

. Quantization Scale Lo
d) Trace based approximation for frame size variation.

36 T
Original —+—
35 4 Samples - |
\ 3 Samples —-x---
3 2 Samples o
34 A
33
32
31 E\\
30 \‘E\g\k{
29 -
"'*\u\ﬁ\'
28
5 10 15 20 25

Quantization Scale
e) Trace based approximation for meR$' N R.

Fig. 66. Framelevel approximation results for sce2&4 (MC I) from Star Wars IV.
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Fig. 67. Framelevel approximation results for scedd7 (MC Il) from Star Wars IV.
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Fig. 68. Framelevel approximation results for scedd5 (MC IIl) from Star Wars IV.
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Fig. 69. Framelevel approximation results for sced65 (MC 1V) from Star Wars IV.
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Fig. 70. Framelevel approximation results for sce®82 (MC V) from Star Wars V.
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Fig. 71. Framelevel approximation results for sce®84 (MC 1) from The Terminator.
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Fig. 72. Framelevel approximation results for scedé2 (MC 1) from The Terminator.
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Fig. 74. Framelevel approximation results for sce@62 (MC IV) from The Terminator.
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Fig. 75. Framelevel approximation results for scedd1 (MC V) from The Terminator.
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We observe that for most scenes the differences betweeagtregatedand theframe level approxi-
mations is only minor. In both cases, the fit between the esidn®D curve and the real VD curve is
better for the region of higher PSNR values, as previously riebgleon theaggregatedlevel. We also
observe that the frame level approximation gives approtéipahe same performance as the aggregate
level approximation. We furthermore observe that the iildial statistics (i.e., frame size mean and
standard deviation, and PSNR quality) are approximated vety with both aggregate and frame level
approximation for a small number of samples. The approxomnatif the typically highly non-linear VD
curve appears to pose a particular challenge.

In Figs. 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,%nde plot the approximation at the
macroblocklevel. In addition we calculate the coefficient of correlatibetween the approximated and
the real statistics as in Eqn. 10 and the mean squared error (FSE) three approximation levels. The
results are given in Tables VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, and
XX.

Similar to the two other levels, the VD approximation with twiderpolation points gives a poor fit.
We observe however, that with three interpolation pointsfithbecomes fairly good, and becomes even
closer with four interpolation points. We conclude that thacroblockievel yields the best approximation
for a given number of sample points.
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Fig. 76. Macroblocklevel approximation results for sce288 (MC 1) from Football .

TABLE VI
COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR(M SE) FOR SCENE298WITH GOP PATTERN 7.

. Quantization Scale Lo
d) Trace based approximation for frame size variation.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.9078| 0.9893| 0.9888 0.1151 0.0121 0.0063
o? 0.9786 | 0.9917 | 0.9974 || 2.2057e+014| 7.1976e+013| 1.6691e+013
X 0.9939 | 0.9977 | 0.9980 | 481702.6713| 104399.7190| 54121.5672
PSNR || 0.9997 | 0.9998| 0.9999 0.0054 0.0015 0.0005
Frame | CoV 0.9821| 0.9909 | 0.9899 0.0210 0.0046 0.0048
o2 0.9953 | 0.9989 | 0.9993 || 5.4204e+013| 9.4109e+012| 3.0180e+012
X 0.9983| 0.9978| 0.9981 | 46065.0784| 53460.3440| 44732.8947
PSNR || 0.9996| 0.9998| 0.9999 0.0055 0.0015 0.0005
MB CoV 0.9849| 0.9885| 0.9901 0.0113 0.0045 0.0031
o? 0.9966 | 0.9994 | 0.9994 || 3.9252e+013| 3.1585e+012| 1.9164e+012
X 0.9953| 0.9949 | 0.9977 || 147613.0230 180179.8715| 65281.8491
PSNR || 0.9996 | 0.9998| 0.9999 0.0055 0.0015 0.0005
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Fig. 77. Macroblocklevel approximation results for sce289 (MC II) from Football .

TABLE VI

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENE299WITH GOP PATTERN 7.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.8929 | 0.9894 | 0.9914 0.0261 0.0024 0.0010
o2 0.9864 | 0.9946 | 0.9981 | 8.5423e+013| 2.8918e+013| 7.6157e+012
X 0.9960 | 0.9989 | 0.9990 | 605441.5634| 95010.7475| 48050.0164
PSNR || 0.9992| 0.9996 | 0.9996 0.0249 0.0071 0.0033
Frame | CoV 0.9520| 0.9944 | 0.9920 0.0114 0.0009 0.0008
o2 0.9955| 0.9989 | 0.9994 | 3.0656e+013| 5.9759e+012| 1.9733e+012
X 0.9984 | 0.9992| 0.9990 | 211002.9508| 39973.5182| 43279.8265
PSNR || 0.9993| 0.9996 | 0.9996 0.0236 0.0069 0.0033
MB CoV 0.9794 | 0.9946 | 0.9944 0.0049 0.0003 0.0003
o2 0.9970| 0.9995| 0.9995 | 2.1273e+013| 2.5206e+012| 1.3134e+012
X 0.9987 | 0.9984 | 0.9989| 64086.3566| 91442.7848| 57144.5720
PSNR || 0.9993| 0.9996 | 0.9996 0.0236 0.0069 0.0033
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Fig. 78. Macroblocklevel approximation results for sce®&7 (MC 11I) from Football .

TABLE VI
COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENES57 WITH GOP PATTERN 7.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.6538 | 0.9370| 0.9825 0.0301 0.0036 0.0007
o2 0.9974| 0.9987 | 0.9990| 1.6126e+012| 5.5411e+011| 3.1518e+011
X 0.9734| 0.9910| 0.9970 | 942154.5169| 215401.4534| 51754.4875
PSNR || 0.9997| 0.9997 | 0.9996 0.0017 0.0019 0.0018
Frame | CoV 0.7209 | 0.9653 | 0.9863 0.0235 0.0019 0.0005
o2 0.9988 | 0.9994 | 0.9995| 6.3659e+011| 1.3570e+011] 1.0603e+011
X 0.9773| 0.9934 | 0.9977 | 795969.9326| 154592.9675| 37575.2991
PSNR || 0.9997 | 0.9997 | 0.9996 0.0017 0.0019 0.0018
MB CoV 0.8592 | 0.9797 | 0.9893 0.0124 0.0005 0.0003
o2 0.9995| 0.9991 | 0.9995| 1.8763e+011| 2.5344e+011]| 1.1353e+011
X 0.9891 | 0.9972| 0.9987 | 373890.7352| 53796.4218| 16632.0050
PSNR || 0.9997 | 0.9997 | 0.9996 0.0017 0.0019 0.0018
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Fig. 79. Macroblocklevel approximation results for scei®4 (MC IV) from Football .

TABLE IX
COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENE1L84WITH GOP PATTERN 7.

_ Quantization Scale L
d) Trace based approximation for frame size variation.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.8798 | 0.9793| 0.9911 0.0058 0.0008 0.0002
o2 0.9926 | 0.9966 | 0.9990 | 4.0099e+013| 1.5463e+013| 3.8768e+012
X 0.9967 | 0.9989 | 0.9993 | 566049.5371| 123830.0066| 44081.8381
PSNR || 0.9993| 0.9994 | 0.9993 0.0121 0.0068 0.0051
Frame | CoV 0.9311| 0.9915| 0.9924 0.0033 0.0003 0.0001
o2 0.9971| 0.9994 | 0.9998 | 1.6103e+013| 3.1519e+012| 6.1213e+011
X 0.9977 | 0.9992| 0.9993| 388284.7900| 74254.9970| 34981.5910
PSNR || 0.9993| 0.9994 | 0.9993 0.0115 0.0066 0.0050
MB CoV 0.9773| 0.9953 | 0.9947 0.0011 0.0000 0.0001
o2 0.9992 | 0.9999 | 0.9999 || 4.5641e+012| 2.4823e+011| 1.4959e+011
X 0.9993 | 0.9995| 0.9994 | 86311.6645| 22459.4637| 26337.0295
PSNR || 0.9993| 0.9994 | 0.9993 0.0115 0.0066 0.0050
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Fig. 80. Macroblocklevel approximation results for sce®d6 (MC V) from Football .

TABLE X
COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENE336WITH GOP PATTERN 7.

_ Quantization Scale L
d) Trace based approximation for frame size variation.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.9487 | 0.9919| 0.9910 0.0007 0.0001 0.0000
o2 0.9873| 0.9970| 0.9989 | 3.1275e+012| 5.8393e+011| 1.0965e+011
X 0.9989 | 0.9994 | 0.9994 || 246785.5237| 80152.4159| 39786.7247
PSNR || 0.9994| 0.9994 | 0.9993 0.0051 0.0059 0.0055
Frame | CoV 0.9711| 0.9937 | 0.9912 0.0004 0.0001 0.0000
o2 0.9953| 0.9991 | 0.9993| 1.2627e+012| 1.6619e+011| 5.6977e+010
X 0.9990 | 0.9994 | 0.9994 || 213749.5419| 70513.2477| 37900.8983
PSNR || 0.9994 | 0.9994 | 0.9993 0.0051 0.0059 0.0055
MB CoV 0.9876 | 0.9963 | 0.9943 0.0002 0.0000 0.0000
o2 0.9980 | 0.9996 | 0.9994 || 5.5510e+011| 6.4481e+010| 4.3498e+010
X 0.9995| 0.9996 | 0.9995| 50923.9406| 33257.4683| 28794.1210
PSNR || 0.9994 | 0.9994 | 0.9993 0.0051 0.0059 0.0055
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Fig. 81. Macroblocklevel approximation results for sce@d4 (MC I) from Star Wars V.

TABLE Xl
COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENE274WITH GOP PATTERN 7.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.4848| 0.9314| 0.9576 0.0901 0.0098 0.0033
o? 0.9959| 0.9970| 0.9980|| 1.5017e+012| 9.1510e+011| 4.5321e+011
X 0.9615| 0.9899 | 0.9958 || 1220250.9867| 207923.3227| 57131.8500
PSNR || 0.9981| 0.9997 | 0.9997 0.0359 0.0039 0.0019
Frame | CoV 0.5755| 0.9624 | 0.9593 0.0735 0.0057 0.0028
o? 0.9974 | 0.9987 | 0.9988| 8.3190e+011| 2.4998e+011| 1.8991e+011
X 0.9681| 0.9930| 0.9967 | 1002019.4664 138130.3653| 41558.3004
PSNR || 0.9981| 0.9997 | 0.9997 0.0357 0.0039 0.0019
MB CoV 0.8196 | 0.9786 | 0.9725 0.0414 0.0009 0.0012
o2 0.9986 | 0.9988 | 0.9990| 3.2765e+011| 1.9081e+011| 1.8106e+011
X 0.9879| 0.9980 | 0.9982 | 395256.9521| 23209.2210| 17175.2000
PSNR || 0.9981| 0.9997 | 0.9997 0.0357 0.0039 0.0019
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Fig. 82. Macroblocklevel approximation results for scedd7 (MC Il) from Star Wars IV.

TABLE Xl

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENE117 WITH GOP PATTERN 7.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.8837 | 0.9892 | 0.9900 0.0086 0.0007 0.0006
o2 0.8716 | 0.9237 | 0.9521| 2.4377e+011| 8.4185e+010| 4.0639e+010
X 0.9368 | 0.9889 | 0.9969 | 353409.5823| 39689.7312| 8060.1276
PSNR || 0.9936| 0.9928 | 0.9938 0.0267 0.0306 0.0169
Frame | CoV 0.9115| 0.9899 | 0.9880 0.0068 0.0007 0.0007
o2 0.9113| 0.9375| 0.9648 | 1.6416e+011| 6.4205e+010| 2.7618e+010
X 0.9540 | 0.9924 | 0.9975| 258184.9568| 26529.8308| 5737.2708
PSNR || 0.9936| 0.9929| 0.9938 0.0267 0.0303 0.0169
MB CoV 0.9752 | 0.9587 | 0.9643 0.0029 0.0012 0.0010
o2 0.9037| 0.9236 | 0.9552| 1.5142e+011| 7.8475e+010| 3.6313e+010
X 0.9905| 0.9980| 0.9972| 73110.5820| 2575.3346 4554.2534
PSNR || 0.9936| 0.9929| 0.9938 0.0267 0.0303 0.0169
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Fig. 83. Macroblocklevel approximation results for scedd5 (MC IIl) from Star Wars IV.

TABLE XIlI
COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENE115WITH GOP PATTERN 7.

_ Quantization Scale L
d) Trace based approximation for frame size variation.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.7688 | 0.9812| 0.9795 0.0132 0.0008 0.0005
o2 0.9996 | 0.9995 | 0.9996 || 7.9676e+010| 1.0035e+011| 8.8578e+010
X 0.9882 | 0.9978 | 0.9987 || 312308.0059| 35193.5517| 13160.4002
PSNR || 0.9984| 0.9985| 0.9985 0.0178 0.0163 0.0094
Frame | CoV 0.7916 | 0.9825| 0.9796 0.0121 0.0007 0.0005
o2 0.9993| 0.9999 | 0.9999 | 2.3450e+011| 2.0469e+010| 1.6506e+010
X 0.9923 | 0.9986 | 0.9989 | 205885.3443| 19556.6460| 9467.4826
PSNR || 0.9984 | 0.9985| 0.9985 0.0173 0.0161 0.0093
MB CoV 0.9456 | 0.9825| 0.9803 0.0048 0.0002 0.0003
o2 0.9994 | 0.9999 | 0.9998 | 2.3388e+011| 2.2076e+010| 2.7925e+010
X 0.9987 | 0.9991| 0.9991| 34332.0665| 6652.9219 6574.7703
PSNR || 0.9984 | 0.9985| 0.9985 0.0173 0.0161 0.0093

25
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Fig. 84. Macroblocklevel approximation results for scedi€5 (MC V) from Star Wars V.

TABLE XIV
COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENEL65WITH GOP PATTERN 7.

_ Quantization Scale L
d) Trace based approximation for frame size variation.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.4541 | 0.8635| 0.9571 0.0070 0.0011 0.0002
o2 0.9992 | 0.9994| 0.9994 || 1.1809e+011| 7.7145e+010| 8.7895e+010
X 0.9707 | 0.9909 | 0.9971| 1336948.0082 284345.3317| 61978.5827
PSNR || 0.9982| 0.9992 | 0.9995 0.0324 0.0097 0.0027
Frame | CoV 0.5032 | 0.9099 | 0.9643 0.0062 0.0007 0.0002
o2 0.9989 | 0.9991 | 0.9997| 1.6882e+011| 1.1682e+011| 3.4538e+010
X 0.9725| 0.9919| 0.9974 | 1251289.0775 249873.2863| 54061.5554
PSNR || 0.9982| 0.9992| 0.9995 0.0322 0.0097 0.0027
MB CoV 0.7475| 0.9520| 0.9755 0.0032 0.0002 0.0001
o2 0.9980 | 0.9983| 0.9996| 3.9319e+011| 2.8365e+011| 5.5770e+010
X 0.9839 | 0.9956| 0.9985| 727088.4480| 118462.1985 25328.8165
PSNR || 0.9982| 0.9992| 0.9995 0.0322 0.0097 0.0027
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Fig. 85. Macroblocklevel approximation results for scei@2 (MC V) from Star Wars IV.

TABLE XV
COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENE632WITH GOP PATTERN 7.

_ Quantization Scale L
d) Trace based approximation for frame size variation.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.6888 | 0.8913 | 0.9828 0.0022 0.0005 0.0001
o2 0.9974 | 0.9980| 0.9996 | 6.5688e+010| 4.2216e+010| 5.6635e+009
X 0.9710| 0.9911 | 0.9972 | 408099.5896| 86594.2989| 19148.0985
PSNR || 0.9979| 0.9989 | 0.9996 0.0167 0.0051 0.0015
Frame | CoV 0.6971| 0.8855| 0.9831 0.0021 0.0005 0.0000
o2 0.9974 | 0.9979 | 0.9996 || 6.6320e+010| 4.6078e+010| 6.3330e+009
X 0.9719| 0.9911| 0.9973| 394595.8025| 85313.6359| 18352.9577
PSNR || 0.9978| 0.9989 | 0.9996 0.0170 0.0052 0.0015
MB CoV 0.8594 | 0.9364 | 0.9843 0.0012 0.0003 0.0000
o2 0.9983| 0.9987 | 0.9994 || 3.6286e+010| 2.2167e+010| 1.3666e+010
X 0.9828| 0.9943 | 0.9982 | 235489.4584| 47641.9119| 9435.5042
PSNR || 0.9978| 0.9989 | 0.9996 0.0170 0.0052 0.0015
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Fig. 86. Macroblocklevel approximation results for sced84 (MC I) from The Terminator.

TABLE XVI
COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENE384WITH GOP PATTERN 7.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.6515| 0.9629 | 0.9757 0.1002 0.0091 0.0032
o? 0.9914| 0.9937 | 0.9981 || 1.0797e+013| 7.4575e+012| 1.9101e+012
X 0.9858 | 0.9977 | 0.9981 || 476980.0219 42191.9574| 19863.8921
PSNR || 0.9935| 0.9991| 0.9998 0.1508 0.0154 0.0026
Frame | CoV 0.7608 | 0.9844 | 0.9764 0.0686 0.0038 0.0025
o? 0.9949 | 0.9974 | 0.9993| 6.3397e+012| 3.0954e+012| 6.5636e+011
X 0.9911| 0.9985| 0.9980 || 299785.4444| 17328.2805| 18236.9374
PSNR || 0.9935| 0.9991| 0.9998 0.1504 0.0154 0.0026
MB CoV 0.9203| 0.9773| 0.9718 0.0359 0.0015 0.0021
o2 0.9944 | 0.9978 | 0.9997 | 7.3306e+012| 2.7035e+012| 2.0951e+011
X 0.9975| 0.9952 | 0.9966 || 66032.9372| 60897.6148| 42339.3178
PSNR || 0.9935| 0.9991| 0.9998 0.1504 0.0154 0.0026
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Fig. 87. Macroblocklevel approximation results for sced&2 (MC Il) from The Terminator.

TABLE XVII
COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENE462WITH GOP PATTERN 7.

25

_ Quantization Scale L
d) Trace based approximation for frame size variation.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.8515| 0.9711| 0.9844 0.0170 0.0023 0.0006
o2 0.9914 | 0.9973 | 0.9994 || 4.1375e+012| 1.0445e+012| 1.5292e+011
X 0.9939 | 0.9976 | 0.9987 | 136010.1819| 35774.7426| 10386.4111
PSNR || 0.9992| 0.9994 | 0.9996 0.0103 0.0055 0.0034
Frame | CoV 0.8896 | 0.9811 | 0.9856 0.0126 0.0015 0.0005
o2 0.9918| 0.9981 | 0.9997 || 3.9325e+012| 7.4172e+011] 7.1325e+010
X 0.9962 | 0.9985| 0.9989| 81502.6656| 19671.8690| 7631.6823
PSNR || 0.9992| 0.9994 | 0.9996 0.0104 0.0055 0.0034
MB CoV 0.9887 | 0.9753| 0.9755 0.0019 0.0007 0.0009
o2 0.9952 | 0.9994 | 0.9998 || 2.5147e+012| 2.0404e+011| 3.2223e+010
X 0.9984 | 0.9985| 0.9987 | 10894.1578| 12484.3441| 12304.3418
PSNR || 0.9992| 0.9994 | 0.9996 0.0104 0.0055 0.0034
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Fig. 88. Macroblocklevel approximation results for sces@8 (MC Ill) from The Terminator.

TABLE XVIII
COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENE628WITH GOP PATTERN 7.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.5226 | 0.9175| 0.9573 0.0067 0.0009 0.0003
o? 0.9957 | 0.9982| 0.9996 || 2.4137e+012 8.8814e+011 1.5177e+011
X 0.9935| 0.9983 | 0.9990 | 347590.5979| 60033.3799| 19477.8726
PSNR || 0.9994| 0.9997 | 0.9996 0.0126 0.0034 0.0028
Frame | CoV 0.5237| 0.9222| 0.9579 0.0067 0.0008 0.0003
o2 0.9944 | 0.9979 | 0.9997 | 3.1022e+012| 1.0348e+012| 1.4641e+011
X 0.9943 | 0.9986 | 0.9991 | 305425.7669| 49897.9149| 17041.2591
PSNR || 0.9994 | 0.9997 | 0.9996 0.0124 0.0033 0.0028
MB CoV 0.8485| 0.9495| 0.9761 0.0025 0.0002 0.0001
o2 0.9966 | 0.9988 | 0.9998 | 1.9420e+012| 5.7141e+011| 5.6415e+010
X 0.9988 | 0.9994 | 0.9993| 59036.7299| 10033.8056| 9594.3275
PSNR || 0.9994 | 0.9997 | 0.9996 0.0124 0.0033 0.0028
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Fig. 89. Macroblocklevel approximation results for sce@6é2 (MC IV) from The Terminator.

TABLE XIX
COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENE262WITH GOP PATTERN 7.

_ Quantization Scale L
d) Trace based approximation for frame size variation.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.4553 | 0.8981 | 0.9146 0.0023 0.0003 0.0001
o2 0.9961| 0.9985| 0.9997 | 2.1264e+013| 6.7437e+012| 1.1015e+012
X 0.9991| 0.9994 | 0.9993| 122974.0110, 34925.3184| 30662.3918
PSNR || 0.9990| 0.9995| 0.9994 0.0289 0.0084 0.0048
Frame | CoV 0.3423| 0.8816 | 0.9162 0.0029 0.0003 0.0001
o2 0.9933| 0.9975| 0.9996 || 3.6336e+013| 1.1088e+013| 1.5110e+012
X 0.9992 | 0.9994 | 0.9993| 91628.5594| 29865.2514| 29670.0293
PSNR || 0.9991| 0.9995| 0.9994 0.0281 0.0083 0.0048
MB CoV 0.7809 | 0.9136| 0.9518 0.0011 0.0001 0.0001
o2 0.9944 | 0.9982 | 0.9998 | 3.0184e+013| 7.8525e+012| 8.7530e+011
X 0.9990 | 0.9992| 0.9993| 49500.4273| 38951.5499| 31724.8877
PSNR || 0.9991| 0.9995| 0.9994 0.0281 0.0083 0.0048
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d) Trace based approximation for frame size variation.

Fig. 90. Macroblocklevel approximation results for scedd1 (MC V) from The Terminator.

TABLE XX
COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (M SE) FOR SCENE441WITH GOP PATTERN 7.

Level | Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points
2 3 4 2 3 4
Trace | CoV 0.1410| 0.8525| 0.8956 0.0009 0.0001 0.0000
o2 0.9983| 0.9995| 0.9995| 3.3767e+012| 6.1688e+011| 5.9996e+011
X 0.9976 | 0.9993 | 0.9994 || 576562.9865 98889.5527| 46267.2788
PSNR || 0.9983| 0.9989 | 0.9990 0.0483 0.0203 0.0078
Frame | CoV 0.0625| 0.8633 | 0.9049 0.0010 0.0001 0.0000
o2 0.9975| 0.9995| 0.9995| 5.1874e+012| 5.1890e+011| 5.2947e+011
X 0.9977 | 0.9993 | 0.9994 || 555474.3411| 90799.7775| 43743.4701
PSNR || 0.9983| 0.9989 | 0.9991 0.0477 0.0201 0.0077
MB CoV 0.4725| 0.8913| 0.9191 0.0006 0.0000 0.0000
o2 0.9982 | 0.9996 | 0.9996 || 3.4889e+012| 3.5556e+011| 3.7193e+011
X 0.9988 | 0.9995| 0.9995| 264669.8110| 47232.9464| 31524.1059
PSNR || 0.9983| 0.9989| 0.9991 0.0477 0.0201 0.0077
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VI. VD | MPLICATIONS FORSTATISTICAL MULTIPLEXING

In this section we provide a methodology for assessing th@sstal multiplexing gain from the
VD characteristics and examine the implications of the nagability-distortion (VD) characteristics
of encoded video on statistical multiplexing, which is a l@gment in many video traffic management
schemes.

First we augment the frame size notation defined in Section Hitedn an individual video stream to
multiple different streams. We lgt j = 1,...,.J, index the ongoing streams. We I&t(j) denote the
size (in bit) of video framen of stream; encoded with quantization scajeand assume that all streams
have the same number of fram@&& In order to fix ideas in describing our methodology we adopt th
video traffic model with random phase shifts defined in [57].His imodel the frame size is modelled by
a steady state random variable, whereby the distributichefandom variable is given by the histogram
of the frame sizes. In our context we |&t(j) be a random variable denoting the frame size of stream

j encoded with quantization scaje The distribution ofX¢(5) is given by
N

w(w) = POXU() = ) = = 3 Lxi)o) 18)

n=1
where 14 denotes the indicator function, which is 1 4f is true and O otherwise. We |ét denote
the frame period (display time) of a given video frame in s®s0 In order not to obscure our main
points we consider an elementary frame based real-time\stteaming scenario, where each individual
video frame is transmitted at the constant bit ratg(j)/7 during one frame period of lengthh and
the streams are statistically multiplexed onto a bufferl@sk, as illustrated in Figure 91. Loss occurs at
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Fig. 91. Bufferless statistical multiplexing model

the link whenever the aggregated traffic from the ongoing(yistteeamst:1 X1(5)/T exceeds the link
bandwidthC. We measure the loss in terms of the long run fraction of fra@@ods during which loss
occurs, i.e., we define the loss probability as

J
1 .
]Dloss:P Tleq(]) >C (19)
]:

and require that the loss probability be less than some minhes.
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In order to determine whether a set.bktreams can be supported without violating the statistjaality
of service requirement that the loss probability be less thave need to determine the loss probability.
This could be done using discrete event simulation, whichédwvew tends to be computationally very
demanding. We outline two alternative approaches—a ddintria based approach and a large deviations
based approach—which require relatively little compuotadi effort and give accurate results. The Central
Limit approach models the aggregate traffic load as a Normalomnvariable with mea@jzl X,(9)
and variancez;v]:1 ag(j) and approximates the loss probability by the probabilitgt th Normal random
variable with the specified mean and variance exceeds thecdipkcityC - T in one frame period. Note
that for each video strearyj the meanX,(j) and the varianceg(j) of the frame size as a function of
the quantization scalg can be obtained from the traditional rate-distortion curveonjunction with the
rate variability-distortion curve of the video encodingsé note that by using piece-wise approximation
models, see Section V, a few sample encodings of each of thghaxéd videos are sufficient to obtain the
frame size mean and variance for the range of quantizatialesg and thus to assess the loss probability
at a range of quantization scales. The outlined Central Liraged approach is computationally very
simple and requires only the rate-distortion and rate tdifg curves of the encoding, however, it tends
to slightly underestimate the loss probability especiailjthe range of very small loss probabilities, as
we will study numerically in Section VII-A.

The large deviations based approach is very accurate for ritiee @ange of loss probabilities, but
requires a more specific characterization of the frame sireparticular, the large deviations approach
requires the logarithmic moment generation function offtlane sizeu y.(;)(s) = In E[esX"0)], where
s denotes the real valued transform variable. For each of tbkipiexed video streams the function
txa(;)(s) can be explicitly expressed in terms the histogram (18), as

Tmax

pxog(s) =l > wl(z)- e, (20)

T=Trmin
wherez,;, andz,.x denote the smallest and largest frame size, respectivetyiridividual logarithmic
moment generating functions are then used to compute tlaeitloignic moment generating function of the
aggregate traffic agx.(s) = Z‘]:l tixa(j)(s), which in turn is employed to compute the large deviations
estimate of the loss probability as
e M @

In (21), s* is the unique solution te/y,(s) = CT, and the prime denotes derivative with respect.to
This computation of the large deviations estimate can be atatipnally demanding due to the direct
computation of the logarithmic moment generating funcfienthe differents values from the histogram.
In addition, when assessing the stream admissibility aililyufor a range of quantization scalesfor
different streamg, the direct computation requires the histogram of the fraines for each quantization
scaleq for each streanj.

The computation of the large deviations estimate can be madgutationally more efficient as we
describe next. Following the general series expansiomiquak developed in [58, p. 206] we can expand
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the logarithmic moment generating function of strearancoded with quantization scajeas
K

fxa(s)(s) = Z ct(j) - s~ (22)

k=1
The series expansion coefficients can be expressed as

1 k—1
¢ = al() = 1 D1 an-il) - ). (23)
i=1
where
) = 3 S rile) -+ @)

We found in our numerical work that a relatively small numbérkK = 15 coefficients is sufficient for
a good series approximation, leading to a significantly redusomputational effort when computing the
moment generating function for differenfor a given (fixed) quantization scaje To make the calculation
of the moment generating function for a range of differenarmgization scaleg more efficient, we use
the following technique. We obtain the coefficiemsj), k¥ = 1,..., K, for a small number of sample
encodings for different quantization scalgfor each videg;j. For a given videg and coefficient index,
we then construct a piecewise approximation of the coefficigfy) across the full range of quantization
scalesq, using the approximation techniques described in Section V.

A. Numerical Results

In this section we present numerical examples to illustiiageuse of the methodology described in the
preceding section as well as the typical characteristich@fmultiplexing behavior as a function of the
video quality. For the illustrative examples presentecchge use theStar Warsvideo sequence, which
has been widely used in video multiplexing studies, for algaing video streams. We also present the
results for our two additional movies, namePfpotball and The Terminator Each stream has its own
independent random phase, which models the random startatid user interactivity for the stream. We
denoteJ,.x for the maximum number of simultaneous video streams thatbeasupported by the link
while maintaining the loss constraint, which we verify witlte LD approach. In Figs. 92, 94, and 96 we
plot the maximum number of supported connectidpgx as a function of the PSNR quality. The videos
are encoded with GoP pattern 7 with the same quantizatida fmaall frame types and the link capacity
is set toC' = 50 Mbps. We plot the maximum number of supported streams fok pate allocation
(e = 0) and two non-zera, namelye = 107% ande = 10~%, as well as mean rate allocation, which
is obtained by dividing the link bandwidth by the average rate of the video. We consider both the
frame based real-time streaming of the video as well as the Gsed streaming of the video, where
the frames are aggregated over a GaP=(12) and transmitted at a constant rate over the duration of
one GoP. This GoP smoothing reduces the variability of thewittaffic at the expense of an increase
in the delay of the video streaming by roughly two GoP duregidNVe observe that the introduction of a
small loss probability results in a significant increase in the maximum number of atpg streams over
the peak rate allocation. This increase appears to be elpeignificant for video streams with lower
PSNR quality; and we will examine this effect shortly in mordaile We also observe that the increase
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in the number of permitted streams for a given increase inldse requirement appears particularly
significant for low PSNR qualities. Increasing the permittesslprobability frome = 107 to ¢ = 1073

for frame based streaming at 31 dB of PSNR video quality, foraimse, allows for approximately 50

additional streams. We also observe that GoP streaminwsalgenerally for more streams than frame
based streaming, especially for low video qualities.

To further examine the statistical multiplexing effect tbiferent video qualities and different permitted
loss probabilities, we examine the statistical multiplexing gain achieved bgwang for ane > 0. The
statistical multiplexing gain is defined as

Jmax (€) — Jmax(0)

9= 0)
whereJy.x(0) denotes the maximum number of supported connections felelstransmission (i.e., peak
rate allocation). In Figs. 93, 95, and 97 we plot the multipigxgain g(¢) as a function of the PSNR
quality for frame based streaming with differentWe observe that the multiplexing gain as a function
of the PSNR video quality exhibits a “hump”, similar to the @sponding VD curves (see Figs. 41, 42,
and 43). The explanation for this behavior of the multiplgxgains is as follows. At very low quality and
at very high quality, the variability of the video traffic islaévely low (compared to the quality region
where the traffic variability peaks). For the lower varidyiltraffic, the peak rate allocation allows for
a relatively larger number of streams, i.e., a higher long auerage utilization of the link (defined as
the sum of the average bit rates of the supported streandedidy the link bandwidth). For the higher
variability streams, the utilization is lower. When stagially multiplexing with some non-zero permitted
loss probabilitye, the statistical multiplexing effect (i.e., the effect eiporarily high bit rates in some
streams being compensated for by the temporarily low bésrat other streams) becomes stronger when
more streams are multiplexed, i.e., for lower stream qualis a result, the statistical multiplexing gain
is small for high quality streams because relatively feveatns can be supported and the utilization with
peak rate allocation is already relatively high. The stagtmultiplexing gain is the highest in the region
where the VD curve peaks since the number of streams witiststat multiplexing is relatively high and
the utilization with peak rate allocation is the lowest. Fery low quality streams, the number of streams
with statistical multiplexing is higher, but so is the numloé streams with peak rate allocation, resulting
a somewhat smaller statistical multiplexing gain. In sumynae conclude from the results shown here
that the highest multiplexing gains are achieved aroundptek of the VD curve, i.e., in the region of
high variability.

7 (25)



95

600 ; ; ;
Mean rate —+— 6 ; epsifon 10"2 .
GOP 10-3 - it ron=-1 ,
500 GOP 10-7 ~x 5.5 fou N epsilon=107 -
Frame 10-3 —& B epsilon=10 g ~x
Frame 10-7 = o epsilon=10 e ]
400 GoP peak rate --<-- | e Tl e \
Frame peak rate -~ 45 |-& T B
] 4 i =
£ 300 — :
- N o x
> 35 : \
200 3 e |
100 2.5 .
e ?’* 2 %
0 15 4
26 20 28 29 30 P;tR 32 33 34 3% 3% 26 27 28 29 30 31 32 33 34 35 36
PSNR
Fig. 92.  Maximum number of supported strea as _. . . . . .
9 bp MSax Fig. 93. Multiplexing gaing(¢) as a function of PSNR video

a function of PSNR quality folFootball, and link bandwidth

C = 50 Mbps quality for Football and bandwidthC' = 50 Mbps.

900

Mean rate‘ — 18 ep‘s”on 10_2
GOP 10-3 - | =107 ——
800 GoP 10-7 - Heoooe 16 /)’(/::‘/:é—,\\ eps“on:lo_ x|
700 Frame 10-3 ~a- _| D emen N\ epsilon=10" ~x -
Frame 10-7 ---=-- 14 K By X epsilon=10 @
600 GoP peak rate ---o-- | s L
Frame peak rate -~ 1 s
é 500 R o
” X 10 w0
400 D : \
300 ) -
200 6
100 . .
0 H 3
2
% % PSNR 38 40 28 30 32 34 36 38 40
PSNR
Fig. 94. Maximum number of supported streal asa _. . . . . )
. ep i Fig. 95. Multiplexing gaing(¢) as a function of PSNR video

function of PSNR quality forStar Wars and link bandwidth

quality for Star Warsand bandwidthC' = 50 Mbps.

C = 50 Mbps.
700 : :
Mean rate —+— 12 — 5
5 GOP 10-3 - epsilon=10") ——
600 = GOP 10-7 % g 11 A epsilon=10" -
ﬁ:}\ Frame 10-3 = ///X R‘\ epsilon=1070 ~x--
500 XX Frame 10-7 ---=-- | 10 e epsilon=10 N
R GoP peak rate ---o--- //: S RN \
o Frame peak rate - 9 g e
400 -~ e
£ . — 8 g ° » \
) w B
300 = 7 o S SN
200 6 :
5
100
e 4
26 28 30 32PSNR34 36 38 40 % 28 20 3 2 36 38 20
PSNR
Fig. 96. Maximum number of supported strea as _. . . . . .
g PP Mo Fig. 97. Multiplexing gaing(¢) as a function of PSNR video

a function of PSNR quality forThe Terminator and link

bandwidthC' = 50 Mbps quality for The Terminatorand bandwidthC' = 50 Mbps.



96

VII. NETWORKUTILITY: ASSESSMENTMETHODOLOGY AND TYPICAL CHARACTERISTICS

In this section we provide a methodology for assessing tilgyufrevenue) earned from the video
streaming service and examine its typical characterigticsopen-loop encoded video, We 162,(5)
denote the average quality of video stregrencoded with quantization scale Note that if the utility
depends only on the number of supported streams (irrespeatitheir video quality), then the revenue
is maximized by streaming the lowest qualityg min,{Q,(j)} for each streany. On the other hand,
if we assume that the utility for the content provider is nmaigied by the highest multiplexing gain,
then it would be preferable to stream the videos withy, i.e., with the highest variability. These initial
observations do not consider the quality of the streamedovid

In a more realistic scenario, the revenue from the videastiag is likely determined by the number
of supported streams as well as their quality. To capture éffiect we adopt utility functions which
are widely employed in microeconomics to relate the prefegs of consumers (in our case clients) to
specific goods or services (in our case the average videdigadli,(;)). In our context the utility function
models the value (utility) that a video stream of a given iyydlas for a user. A widely employed type of
utility function in microeconomics are functions with dinishing marginal utility. With such functions,
the marginal increment in the utility of a good for a fixed imoent in the quality of the good decreases
as the absolute quality level increases. Such functionsaapgdeo appropriate in our context because a
client currently receiving a low quality video (encodedtwi large quantization scale) typically perceives
a noticeable increase in quality if the video quality is Istlg increased (the quantization scale reduced).
On the other hand, for a client receiving a high quality videslight further increase in quality is typically
barely noticeable [59]. A typical utility function [43], 8} reflecting this behavior is given by

Ug(§) = T+ u(j) - logyo[l + Qq(j) — Qmin(5)], (26)

where u(j) is a tuning parameter quantifying the value of the qualitgréases to the user receiving
stream;. Note that the minimum quality video (with the largest quzation scale) is assigned a utility
of one in this definition. We assume that the minuscule lossélseamultiplexer do not deteriorate the
video quality; the incorporation of the impact of the lossesthe video quality is left as future work, as
outlined in Section VIII. The total network utility earned frothe video streaming as a function of the
vector of quantization scales= (¢(1)....,q(J)), is obtained by summing the utilities for the individual
supported streams, i.e.,

Us(@) = Uy(h), (27)

j=1

whereby the techniques from Section VI are used to asseshevheetset of/ streams can be supported
for a permissible loss probability. The functidi(q) can now be maximized to determine the largest
network utility value and the quantization scales attajrinat value.

A. Numerical Results

For simplicity of exposition we consider in our illustragivnumerical work a homogeneous streaming
scenario where all ongoing streams have the same utilitgnpeteru(j) = « and are obtained from the
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Football, Star Wars or Terminatorvideo with random phase shifts. In this scenario, the oVeetivork
utility is obtained by multiplying the utility for a given stam by the number of supported streams, i.e.,
Us(q) = J-Uy(j), and we refer to/max - Ug(j) as the maximum network utility.

In Fig. 98 we plot the maximum network utility as a function bEtPSNR video quality for different
parameters in the utility function definition and for different permitddoss probabilities for Star Wars
The Juax values calculated with the large deviations approach aottepl in Figs. 92, 94, and 96 are
used. The bandwidth is set t0 = 50 Mbps. We observe from Fig. 98(a) that the maximum network
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Fig. 98. Maximum network utility as a function of PSNR video quality &tar Wars

utility exhibits a characteristic hump similar to the VD warand the statistical multiplexing gain. We
furthermore observe from Fig. 98(b) that for larger utilitgrametern, i.e., when more value is assigned
to the video quality, the peak in the maximum utility tendgitdt towards higher video qualities. In other
words, the largest network utility value is achieved byistaally multiplexing fewer streams, but each
stream has a higher quality. Examining Fig. 98(a) more closety observe that higher permitted loss
probabilities and GoP smoothing result in significant insesan the maximum utility, except for very high
PSNR qualities. For a permissible loss probabilityeaf 10~7, for instance, GoP based streaming gives
approximately 13% higher utility than frame-based stremmaround the peak of the maximum utility
curve. Similar results are obtained for the movie®tball and Terminator as illustrated in Figs. 99 and
100, respectively.

The results presented so far have used the large deviatigneaagh to determine the admissibility
of a set of streams. In Fig. 101 we plot the maximum networkitytibbtained when employing the
Normal approximation to determine the stream admissglalitd compare with the large deviations based
results forStar Wars We observe that the Normal approximation gives generaliyyfaccurate results,
especially for the larger permitted loss probability- 10~3. For the smaller loss probability= 10~7 the
Normal approximation slightly overestimates (by typigd#tss than 5%) the achievable utility. We obtain
similar outcomes for the movidgotball and Terminatoras illustrated in Figs. 102 and 103. Overall, we
may conclude that the Normal approximation gives a fairlpdjassessment of the utility. Note that the
Normal approximation requires only the rate-distortiorDjRunction and the rate variability-distortion
(VD) function of the encoded video, both of which can be alddi with high accuracy by a piecewise
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linear approximation based on a few sample encodings.

VIIl. CONCLUSION

We have examined the relationships between video qualityate variability, and the utility from a
streaming service with statistical multiplexing for opeep encoded video. We have found that the rate
variability-distortion (VD) curve of open-loop encodeddeb exhibits typically a characteristic “hump”
behavior and have investigated how this hump behavior isdnflad by the different motion levels in
the video content, the video encoding parameters and traffaothing. We have found that the bit rate
variability is the highest and the hump in the VD curve is marsinounced for low motion video scenes.
We have also found that larger quantization scales for tedigtive frame types in MPEG (compared to
the quantization scale for the intra coded frames) and sh@bP patterns tend to increase the level of
bit rate variability. Furthermore, we have observed thdfitramoothing within a scene is highly effective
in reducing the bit rate variability within the scene, whadraffic smoothing over a long video is less
effective in reducing the bit rate variability of the video.
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We have described a methodology for assessing the adriitgsdiia set of video streams on a link
subject to a statistical quality of service criterion anddesessing the utility (revenue) earned by a service
provider when statistically multiplexing video of differequality levels over the link. In summary, the
methodology first determines whether a set of streams cargp®ged while ensuring a small long run loss
probability. The utility from the supported streams is themputed by adding the utilities corresponding
to the quality levels of the individual streams. Our numariwork for homogeneous streaming scenarios
indicates that the statistical multiplexing gain and thltytas a function of the video quality level typically
exhibit a characteristic “hump” similar to the VD curve. Theasis in these functions are typically in
the vicinity of the quantization scale attaining the peakhe VD curve. Finally, we have demonstrated
that the Normal approximation which relies on the first andosdcmoment of the video traffic (as a
function of the quality level) is quite accurate in assegsre network utility in the bufferless statistical
multiplexing model.

There are many exciting avenues for future work. One avente iscorporate the effect of the lost
video traffic on the video quality, which becomes important lexge loss probabilities. To incorporate
the effect of these losses in our utility evaluation, thelijyi@af a stream could be modeled as a function
of both the quantization scalg and the loss probability limit, i.e., asQg(j), using for instance the
models studied in [23], [24], [59]-[62]. This adjusted qtalk);(j) can then be employed in the utility
evaluation, e.g., by using a utility function such as (26).
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