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Multiplexing
Patrick Seeling and Martin Reisslein

Abstract

Encoded video is expected to contribute a significant portion of the load on future communication
systems and networks, which often employ statistical multiplexing. In such systems, the number of video
streams that can be supported depends both on the mean bit rate as well as bit rate variability of the
video streams. At the same time, the utility (revenue) earned from video streaming depends both on the
number of supported video streams as well as their quality level. In this paper we examine the interplay
between video quality, traffic variability, and utility foropen-loop encoded video. We introduce therate
variability-distortion (VD) curvewhich relates the bit rate variability to the quality level of an encoded
video. We find that the VD curve generally exhibits a characteristic “hump” behavior of first increasing,
peaking, and subsequently decreasing variability for increasing quality. We examine the impact of video
content characteristics, encoding parameters, and trafficsmoothing on the VD behavior. We describe a
methodology for assessing(i) the set of the video streams that can be supported with a statistical quality
of service requirement, and(ii) the utility earned from video streaming over a link. This methodology
is based on the rate-distortion and rate variability-distortion characteristics of the videos. We find that
the statistical multiplexing gain and the utility as a function of the video quality level typically exhibit a
“hump” similar to the VD curve.

Index Terms

Network utility, statistical multiplexing, variable bit rate video, video content, video quality, video
traffic, video streaming.

I. I NTRODUCTION

Video streaming is expected to play a dominant role in futuremultimedia applications, including in

multimedia applications that are offered over communication systems and networks. For the transport over

communications systems and networks the video is typicallycompressed (encoded). Generally, video can

be encoded(i) in an open loop with a fixed quantization scale, which results in fairly consistent video

quality but variable bit rate (VBR) video traffic, or(ii) in a closed loop by adjusting the quantization

scale, which can keep the bit rate close to a fixed target bit rate but typically results in quality variations

in the video [1]. We note that video can also be encoded with scalability into multiple layers. Broadly

speaking, a given layer is either encoded with an open loop togive fairly constant quality and variable bit

rates, or with a closed loop to give a close to constant bit rate and variable quality. Also, the video can

be encoded with fine granularity scalability, which permits the fine granular scaling of the video bit rate
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and quality. In this paper we focus primarily on non-scalable (single layer) video encoded with a fixed

quantization scale. However, our methodology and results are also applicable to variable bit rate layers

of scalable encodings.

In order to transport the variable bit rate video traffic at reasonably high levels of network utilization,

the video streams are typically transported with some sort of statistical transport scheme, which may

occasionally drop (lose) some of the video traffic. These statistical transport schemes employstatistical

multiplexing, i.e., they exploit the fact that the peaks in the traffic of thesimultaneously ongoing streams

do typically not collude. The number of simultaneous streamsthat can be supported by a given network

depends on the statistical characteristics of the video traffic and the tolerable loss rate. Importantly, the

utility (i.e., revenue) earned from streaming videos over a given network typically not only depends on

the numberof simultaneously supported streams, but also theirquality. Clearly, the utility increases by

increasing the number as well as the quality of the streams that can be simultaneously supported with a

given network capacity.

Assessing the utility of a network providing a video streaming service with statistical multiplexing

thus requires the joint consideration of the number of supported streams as well as their quality levels.

Importantly, the number of streams that can be supported with statistical multiplexing depends on the

mean (average) bit rate as well as the variability of the bit rate. For given mean bit rates the number of

supported streams decreases as the variability of the trafficincreases. Intuitively, with higher variability

it is more likely that colluding traffic peaks exceed the network capacity and result in losses.

Rate-distortion curves, which have been intensively studied (see Section II) relate the size (in bit) of

an encoded video frame to its quality and can also be used to relate the average bit rate of a sequence

of video frames to the average video quality1. Considering mean bit rates and quality levels, however,

is insufficient to assess the utility of video streaming with statistical multiplexing since the number of

supported streams also depends critically on the bit rate variability.

To facilitate the assessment of the utility of video streaming with statistical multiplexing we introduce

and examine in this paper therate variability-distortion (VD) curvewhich relates the bit rate variability

of an encoded video sequence to its average quality level. Wefind that for a variety of transform video

coders, the VD curve exhibits a characteristic “hump” behavior, i.e., the bit rate variability first increases,

peaks, and subsequently decreases as a function of the videoquality, as illustrated in Figs. 1 and 2 which

show the coefficient of variation of the frame sizes (in bit) asa function of the PSNR video quality

for scenes from the movieTerminator and a video of a football game. We also find that this hump is

most pronounced for low motion video scenes (MC I in the figures, as detailed shortly) and for long

video sequences consisting of many scenes. We study the impact of the VD behavior on the statistical

multiplexing of video streams and the utility obtained froma given network capacity. We find that the

statistical multiplexing gain and the utility typically reach a maximum at a quality level that is in the

vicinity of the quality level where the VD curve peaks. Thus the existence of the hump phenomenon is

of significance for the communication systems and networkingdomain, as well as for content providers

1Strictly speaking, rate-distortion curves relate bit rate to distortion (whereby distortion is inversely related to quality), but it
is quite common to refer to the curves relating bit rate to quality as rate-distortion curves and we will follow this practice in this
paper.
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Fig. 2. VD curves for MPEG-4 coded scenes fromFootball.

who have to make a rate–quality trade-off decision.

This paper is organized as follows. In the following section we review related work. In Section III we

describe the set-up of our study of the VD characteristics ofencoded video and introduce our notations.

We present a detailed study of the VD characteristics of open-loop encoded video in Section IV. We first

examine the effects of intra coding and inter coding, as wellas the effects of the different frame types and

Group of Picture (GoP) patterns on the VD characteristics of scenes of different levels of motion. We then

examine the effects of video traffic smoothing within individual scenes and over full length videos on the

VD characteristics. In Section V we examine piecewise approximation models which give an estimate of

the full VD curve from a few sample encodings. The impact of theVD characteristics on the statistical

multiplexing of video streams over a bufferless link is studied in Section VI. In Section VII we consider

the utility earned from the streaming with statistical multiplexing over the bufferless link considered in

the previous section. Our main conclusions are summarized in Section VIII.

II. RELATED WORK

Video streaming over networks has received a great deal of attention over past two decades, see for

instance [2], [3]. Our study relates to the following three main lines of research:(i) research on the

rate-distortion (RD) characteristics of encoded video,(ii) research on the analysis and modeling of video

traffic, and(iii) research on video traffic management mechanisms. Research onthe RD characteristics of

encoded video examines the relationship between the (mean)bit rate and the video quality (and encoder

quantization scale), see [4], [5] for tutorial overview of this area of research. The two main approaches

that have been employed in RD research are analytical modeling and empirical modeling. Analytical

modeling, such as pursued in [6] attempts to derive mathematical formulas for the RD behavior in terms

of the statistics of the source video and the properties of the encoding mechanism. Empirical modeling,

as studied in [7], [8], strives to approximate the RD curve byinterpolating between a set of sample

points. A unified RD analysis framework, which builds on an analysis of the percentage of zeros in the

transformed video frames in conjunction with rate curve modeling is developed in [9]. The modelled RD

characteristics are typically used to control the mean bit rate of video encoders [10], [11] and can also
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be used for allocating mean bit rates to video streams for network transport [12], [13]. Our study differs

from this literature on the RD characteristics in that we examine the relationship between the variability

of the bit rate on the one hand, and the video quality (and quantization scale) on the other hand. In other

words, the existing RD studies have focused on the first order statistic of the video traffic, whereas our

focus is on the second order statistic (which we study in an empirical manner).

The statistical analysis of video traffic and the development of video traffic models has also received

significant interest, see for instance [14]–[22]. This line ofwork is primarily focused on obtaining insights

into the statistical properties of the traffic (including thebit rate variability) of a given video encoding

(for a given, typically fixed quality level or quantization scale) and developing analytical models for the

observed statistical properties. In particular, the focusis on finding parsimonious models that allow for

the characterization of video traffic with a small number of model parameters. In contrast, in this paper

we examine the bit rate variability of the video as a functionof the quality level/quantization scale and

demonstrate that the quality level of the video has a profound impact on the video traffic statistics, which

to the best of our knowledge has not been reported in detail before.

The related area of research on video traffic management mechanisms may be viewed in terms of

the following three different problem sub-areas:(a) traffic management for a single video stream,(b)

traffic management for a group of multiplexed streams of fixed quality (quantization scale), and(c)

traffic management that adapts the video quality while considering multiple multiplexed streams. The

transmission of a single video stream is considered by the studies [23]–[27], which strive to maximize

the video quality of the considered single stream subject tothe available network bandwidth and suffered

packet losses. The studies [28]–[36] represent a sample of the large body of literature on the sub-area of

traffic management for a group of multiplexed streams of fixed quality. The main focus of this sub-area

is to maximize the number of video streams with a given (known) traffic pattern that can be supported

subject to a given amount of network bandwidth and a maximum permissible loss. Whereby the considered

video streams are pre-encoded with a particular quality level or quantization scale that are not considered

as independent variables in these studies. In contrast, in this study we examine the multiplexing of video

streams as a function of the quality level/quantization scale. Our investigations indicate that the quality

level of the video critically affects the multiplexing behavior; this effect has been largely ignored to date.

The sub-area of traffic management that adapts the quality while considering a group of multiplexed

streams is generally more closely related to our work in thatwe also consider multiple multiplexed streams

and examine the multiplexing behavior as a function of the video quality. The early studies [37]–[39]

considered this problem sub-area at a conceptual level without considering in detail the dependency of

the traffic statistics and multiplexing behavior on the videoquality which is the focus of our study. Error-

resilience mechanisms that mitigate the drop in quality dueto multiplexing losses are developed in [40].

Joint source-channel coding in the context of multiplexinglosses is examined [41]. The study [42] presents

a system architecture for a streaming service which adaptively changes the quality level of the streamed

video in response to user feedback while the streaming is ongoing and examines the achieved multiplexing

performance and user perception rating. Our study of the statistical multiplexing and the utility of variable

bit rate video streaming complements this literature by uncovering the fundamental relationships between

the rate variability produced by the open-loop encoder for different quantization scales and the associated
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achievable multiplexing gains and network utilities.

We note that the conceptual aspects of the pricing of video services and the utility of video streaming

are discussed in [43]–[47]. Also, a recent study [48] examined the maximization of the utility a given

user obtains from receiving a video stream. Our utility study in Section VII differs from [48] in that we

consider the utility that a service provider earns from multiplexing multiple video streams over a given

network bandwidth.

III. M ETHODOLOGY OFRATE VARIABILITY -DISTORTION STUDY

For our evaluation of the rate-variability-distortion characteristics of encoded video sequences, we

employ the setup illustrated in Figure 3. As example video scenes for this study we selected scenes

sequence
YUV

Original
Segmented

YUV MPEG4
Wavelet

H.264

Encoder

statistics

Scene detection Encode segment

Fig. 3. Outline of the evaluation setup.

from the two moviesStar Wars IVand The Terminator, and aFootball game recording in QCIF format

(176 × 144 pixels). In addition, we consider three of the well–known test sequences, namelyCarphone

andClaire in the QCIF format andParis in the CIF (352×288 pixels) format.

We used publicly available scene detection software for thedetermination of scene boundaries. Scene

boundaries were detected based on(i) director cuts (i.e., the abrupt change of scene content between two

consecutive frames), and(ii) fades between scenes (i.e., the dissolving of one scene intothe following

scene using several frames). We visually verified the selected scenes for correctness of scene boundaries.

In general, video content can be classified according to several criteria, see for instance [49]– [50].

To illustrate the impact of the video content on the VD characteristics we consider the level of motion

(content dynamics) in the video, which is widely considereda key characteristic of video content. We

classify the content of a video scene according to the level of motion into five motion classesranging

from motion class I for a low level of motion to motion class V for a high level of motion. For each

motion class we selected a representative scene from each video for our study. An overview of the selected

scenes is presented in Table I.

We consider a variety of Group of Pictures (GoP) patterns, which are shown in Table II. Note that

pattern 7 corresponds to the widely adopted ’standard’ pattern. For the video coding, we use the reference

implementations of the MPEG4 encoder, the H.264/AVC development version 6.1e [51], and the wavelet

encoder presented in [52]. We used the single layer encodingand the simple profile of MPEG4, encoding

each individual frame as single video object.

A. Definition of Traffic and Quality Metrics

In this section we provide the definitions of the traffic and quality metrics used throughout this paper.

Let Dx and Dy denote the number of pixels in the horizontal and vertical directions in a given video

frame (e.g., for QCIFDx = 176 and Dy = 144). Let n, n = 0, . . . , N − 1, denote the position of the
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TABLE I

OVERVIEW OF CONSIDERED SCENES.

Video Scene # Length (frames) Motion Class Description

Football 298 227 I Intel logo with moving background (trailer).
Star Wars IV 274 443 I Princess Leia’s hologram pleas for help.
Terminator 384 520 I Talk between two humans in a tunnel.
Football 299 367 II NFL logo animation.
Star Wars IV 117 391 II Slow zoom on R2D2 and C3PO marching in the desert.
Terminator 462 275 II Terminator makes a call.
Football 557 266 III Subway train GAP commercial.
Star Wars IV 115 112 III Darth Vader gives orders and walks away.
Terminator 628 140 III Gas truck makes U-turn.
Football 184 111 IV Robot slides to camera (trailer).
Star Wars IV 165 89 IV R2D2 is captured by sandpeople.
Terminator 262 69 IV Car breaks through entrance doors.
Football 336 86 V Camera follows running player.
Star Wars IV 632 46 V Fight in a bar on Tatooine.
Terminator 441 253 V A picture burns.

Carphone 1 382 III Talking man inside car.
Claire 1 494 I Woman talks in front of blue screen.
Paris (CIF) 1 1065 I Man and woman are talking.

TABLE II

EVALUATED GOP PATTERNS FORDCT–BASED ENCODINGS.

GoP pattern Length Pattern

0 1 II . . .
1 12 IPP . . .
2 30 IPP . . .
3 scene IPP . . .
4 12 IBP . . .
5 30 IBP . . .
6 scene IBP . . .
7 12 IBBP . . .
8 21 IBBP . . .
9 scene IBBP . . .
10 12 IBBBP . . .
11 12 IBBBBBP. . .

given video frame in a given video sequence that consists ofN frames. Each video frame is divided into

M macroblocks (MB) of16 × 16 pixels (e.g.,M = 99 for QCIF) for DCT based encoding. The DCT

transformation is performed on a block (i.e., subdivision of a macroblock) of8× 8 pixels. We denote the

quantization scale of the encoder byq. The possible values forq vary from q = 1, 2, . . . , 31 for MPEG4

andq = 1, 2, . . . , 51 for H.264/AVC.

1) Traffic Metrics: We denote the size (in bit) of thenth encoded video frame for quantization scale

q by Xq
n. The mean frame size of an encoded video sequence is defined as

Xq =
1

N

N−1
∑

n=0

Xq
n. (1)

We let σq denote the standard deviation of the frame size defined as

σq =

√

√

√

√

1

(N − 1)

N−1
∑

n=0

(Xq
n − Xq)2. (2)
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We primarily employ the coefficient of variation [53] defined as

CoVq =
σq

Xq

(3)

as the measure of variability of the frame sizes (the variability of the bit rate of the encoded video). We

note that an alternative measure of the variability of the frame sizes is the peak-to-mean frame size ratio

defined as
max0≤n≤N−1 Xq

n

Xq

. (4)

The peak-to-mean ratio, however, can be affected by a single very large video frame (i.e., an outlier). This

problem is avoided by the coefficient of variation of the framesizesCoVq, which gives the normalized

averaged deviation of the individual frame sizes from the mean frame size and is therefore widely employed

in performance evaluation [53], [54]. We denote the maximumcoefficient of variation for a given video

sequence as

CoVmax = max
q

CoVq (5)

and denoteqmax for the quantization scale that attains this maximum, i.e.,qmax = arg maxq CoVq. We

similarly defineCoVmin andqmin.

We define the aggregated frame size trace with aggregation level a, a ≥ 1, as

Xi,a
q =

1

a

(n+1)a−1
∑

j=na

Xj
q , for i = 0, . . . , N/a − 1, (6)

i.e., the aggregate frame size trace is obtained by averaging the original frame size traceXn, n =

0, . . . , N − 1, over non–overlapping blocks of lengtha frames.

When different frame types exist, these can be combined to form the group of pictures (GoP). Frame

types are intra coded (I) frames, predicted (P) frames, and bi-directional predicted (B) frames. The latter

two frame types are also referred to as inter coded frame types. Whenever we refer to an explicit frame

type, we denote the type by its abbreviation in the subscript(e.g.,XP for the size of a P frame).

2) Quality Metrics: We denote an individual pixel value (an 8–bit value for the luminance) in the

original (uncompressed) video frame byFn(x, y) and its encoded and decoded counterpart byf q
n(x, y),

with 0 ≤ x ≤ Dx − 1 and0 ≤ y ≤ Dy − 1. We use the peak signal to noise ratio (PSNR) as a measure

for the objective video quality. The PSNR qualityQq
n of frame n encoded with quantization scaleq is

defined as

Qq
n = 10 · log10

2552 · Dx · Dy
∑Dx−1

x=0

∑Dy−1
y=0 [Fn(x, y) − f q

q (x, y)]
2
. (7)

We apply the PSNR only to the luminance (Y) component of an individual frame, as the human eye

is most sensitive to this component [55]. We calculate the average objective quality for a given video

sequence ofN individual frames as

Qq =
1

N

N−1
∑

n=0

Qq
n (8)

We note that several more sophisticated approaches for the calculation of the objective video quality (i.e.,

algorithms that take the human visual system into consideration) exist, but the PSNR is widely used as it

is computationally simple a gives generally a reasonably good measure for the perceived quality [56].
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3) Entropy: As measure for the complexity of an individual video frame, we employ the Shannon

entropy. The complexity for each framen is calculated as entropy of the individual byte valuesFn(x, y),

given as

Hn = −
255
∑

Fb=0

P [Fb] · log2 P [Fb], (9)

whereP [Fb] denotes the sample probability of byte valueFb, with Fb ∈ {0, 1, . . . , 255}, for all Dx · Dy

byte values. We denote the coefficient of variation of the entropy values of the framesn, n = 1, . . . , N ,

of a video sequence byCoVH .

We use the coefficient of correlation as measure of (linear) dependency, defined as

ρx,y =
1
M

∑M
m=1 xmym − x̄ȳ

√

1
M

∑M
m=1(xm − x̄)2

√

1
M

∑M
m=1(ym − ȳ)2

(10)

for a set of data points denoted byxm andym, m = 1, . . . , M .

IV. RATE VARIABILITY -DISTORTION CHARACTERISTICS OFOPEN–LOOPENCODED V IDEO

In this section, we examine the coefficient of variation as a function of the video quality, i.e., the VD curve,

of open-loop encoded video. Current video coders are mostlybased on the Discrete Cosine Transform

(DCT). The transform coefficients are quantized to further reduce the size of the video frames at the

expense of the loss of video information (and thus reduced video quality). The combination of these

two encoding mechanisms is commonly referred to as intra coding or texture coding. In addition to intra

coding, current video coders typically exploit temporal dependencies between consecutive video frames

by encoding only movements or differences between consecutive frames, which is referred to as motion

estimation and compensation or inter coding. To examine theVD curve in detail, we first focus on intra

coding and subsequently expand our study to include inter coding.

A. Intra Coding

In this section we examine the rate variability-distortion(VD) behavior of intra coded video and study

the correlation between the VD behavior and the entropy of the video. In Figs. 6 and 7 we plot theVD

curves, i.e., the coefficient of variation of the frame sizesCoVq as a function of the PSNR video quality,

for the Terminator and Football scenes. We observe that the intra coded videos exhibit a characteristic

hump in the VD curve, although the magnitude of theCoV as well as the change in theCoV are smaller

compared to the encoding employing both intra coding and inter coding (see Figs. 1 and 2). Nevertheless,

the CoV varies approximately between 0.1 and 0.22 for the motion class IV scene fromThe Terminator

and between 0.14 and 0.3 for the motion class II scene fromFootball. As illustrated in Fig. 8 for scenes

from The Terminator, we also observe a hump in the VD curve for wavelet based encoding, although the

overall level of the variability is lower than with the DCT based encoding.

To examine the origin of the hump phenomenon in the intra coded videos, we study the correlation

between the rate variability and the entropy of the raw (uncompressed) videos. More, specifically, we study

the correlation between the coefficient of variation of the frame entropiesCoVH and elementary statistics

of the coefficient of variation of the frame sizesCoVq. We consider the following elementary statistics:
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(i) the largestCoVq, i.e., CoVmax as defined in (5),(ii) the range of theCoVq, i.e., CoVmax − CoVmin,

and the standard deviation of theCoVq. The coefficients of correlation between each of the columns with

the elementary statistics of theCoVq and theCoVH column (calculated according to (10)) are all above

0.84. This indicates a relatively strong dependence of the variability of the encoded frame sizes on the

variability of entropy of the uncompressed source video. Wemay thus conclude that the origin for the

VD behavior of the intra coded video lies in the complexity ofthe individual video frames.

To visualize this dependence we plot in Fig. 9 the frame sizes of Carphoneencoded withq = 15

and the corresponding frame entropy forCarphone. We observe that typically video frames with a high

entropy result in large encoded frame sizes and that the variability of the entropy of the source video is

reflected in the variability of the encoded video frames.

B. Inter Coding

In this section we examine the VD behavior of video encoded using intra coding together with inter

coding. We initially study the VD behavior for the GoP pattern 7, which is widely considered in video

studies. We also initially consider encodings where all three frame types are encoded with the same
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TABLE III

ELEMENTARY STATISTICS OF THE VARIATION OF THE INTRA CODED FRAME SIZESCoV AND THE COEFFICIENT OF

VARIATION OF THE ENTROPY OF THE UNCOMPRESSED VIDEO FRAMESCoVH . THE CoV STATISTICS ARE HIGHLY

CORRELATED TO THE ENTROPY VARIATIONCoVH .

Movie Scene MC CoVmax CoVmax − CoVmin Std. Dev.CoVq CoVH

Football 298 I 0.037 0.021 0.007 0.007
299 II 0.292 0.151 0.046 0.078
557 III 0.116 0.057 0.014 0.057
184 IV 0.116 0.059 0.016 0.019
336 V 0.086 0.044 0.011 0.019

Star Wars IV 274 I 0.041 0.027 0.008 0.003
117 II 0.319 0.280 0.097 0.232
115 III 0.372 0.140 0.048 0.204
165 IV 0.113 0.077 0.020 0.013
632 V 0.138 0.107 0.030 0.031

The Terminator 384 I 0.049 0.033 0.009 0.004
462 II 0.119 0.075 0.025 0.048
628 III 0.124 0.087 0.025 0.02
262 IV 0.223 0.126 0.033 0.069
441 V 0.117 0.035 0.012 0.075

Test Sequence Carphone III 0.123 0.051 0.017 0.01
Claire I 0.030 0.010 0.002 0.007
Paris I 0.025 0.013 0.003 0.001

quantization scaleq. We then examine the impact of different GoP patterns and different quantization

scales for the different frame types.

In Figs. 1 and 2 we have plotted the VD curves of theTerminator and Football scenes encoded in

MPEG-4. Similarly in Figs. 10 and 11 we plot the VD curves of the test sequences encoded in MPEG-4

and H.264. The maximum coefficient of variationCoVmax, the quantization scale attaining this maximum

qmax, and the average PSNR quality at this quantization scaleQqmax
for the MPEG-4 encodings are

summarized in Table IV. From a close inspection of Figs. 1, 2, 10, and 11, as well as Table IV, we

observe that the scenes with motion class I exhibit by far themost pronounced peak of the coefficient of

variationCoV , whereas the scenes with motion class V exhibit the smallestpeak. The other motion classes
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Fig. 11. VD curves for H.264/AVC encoded test sequences.

lie in between these two extremes. For these other motion classes there is again an ordering where the

lower motion classes attain higherCoV peaks, although the differences between these peaks are relatively

small compared to the wide gap between the peaks for the motion classes I and V. All VD curves exhibit

the characteristic hump behavior whereby the variability increases with decreasing quality, reaches a peak,

and then drops off as the quality decreases further. These typical behaviors of the VD curve are further

confirmed by the VD curves of the test sequences in Figs. 10 and 11, which demonstrate that both the

MPEG-4 and H.264 encoders produce the characteristic hump behavior of the VD curve. We observe

that the VD curve for H.264 is smoother than the curve for MPEG-4, which may be due to the various

enhancements in H.264 over MPEG-4.

To explain these VD characteristics of inter coded video, wehave first examined whether there is strong

connection between the entropy of the uncompressed video and the coefficient of variation of the frame

sizes. Specifically, we have encoded the video scenes using GoPpattern 3, i.e., the first frame of the

scene is intra coded and all subsequent frames are inter coded with respect to the preceding frame. We

compared this variability of the frame sizes with the entropy of the difference in the pixel values between

successive frames. That is, we calculated the entropy of the differencesFn(x, y)−Fn−1(x, y) for each of
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TABLE IV

MAXIMUM COEFFICIENT OF VARIATION OF FRAME SIZECoVmax, QUANTIZATION SCALE ATTAINING MAXIMUM qmax, AND

QUALITY AT MAXIMUM Qqmax
FOR MPEG-4ENCODINGS WITHGOP PATTERN 7 AND SAME QUANTIZATION SCALE FOR ALL

FRAME TYPES.

Movie Scene GoP Pattern 7
MC CoVmax qmax Qqmax

Football 298 I 2.35 22 26.85
299 II 1.22 22 26.93
557 III 1.03 16 30.92
184 IV 0.78 22 27.18
336 V 0.33 22 26.49

Star Wars IV 274 I 1.26 16 30.08
117 II 0.78 24 34.77
115 III 0.96 18 31.37
165 IV 0.59 14 30.83
632 V 0.42 9 35.75

The Terminator 384 I 1.63 16 28.94
462 II 1.17 22 28.83
628 III 0.68 16 29.67
262 IV 0.62 16 28.33
441 V 0.37 14 29.42

Test sequences Carphone III 0.96 14 31.48
Claire I 1.63 10 37.04
Paris I 1.8 18 28.45

the framesn, n = 1, . . . , N − 1, and then calculate the coefficient of variation of these individual frame

difference entropies. This calculation of the entropy is motivated by the inter coding, which primarily

encodes the differences between successive frames. We haveobserved that there is no strong correlation

between the coefficient of variation of the frame sizes and entropy differences. From this observation we

may conclude that the inter coding introduces additional variation, which is not explained by the frame

complexity measured as entropy.

To obtain insight into the origins of the VD behavior we proceed to examine the coefficient of variability

more closely and then examine the encoding of the different frame types. The slope of the VD curve is

given by

dCoVq

dq
=

σ′
q · X̄q − σq · X̄

′
q

X̄2
q

, (11)

wherey′ denotes the derivative ofy with respect toq, The VD curve is increasing inq if

σ′
q · X̄q > σq · X̄

′
q, (12)

and decreasing inq if this inequality is reversed. We illustrate this behaviorfor Scene 384 (MC I) ofThe

Terminator in Fig. 12.

We observe that forq < 17, with increasingq the standard deviation of the frames sizes is dropping

relatively slower than the mean frame size such that inequality (12) holds and the VD curve is increasing.

For q > 17, the trend is reversed, i.e., the standard deviation of the frame sizes is dropping relatively

faster than the mean frame size with increasingq, resulting in the decrease of the VD curve.

In the following, we further examine the different factors influencing the VD behavior for GoP pattern

7.
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Fig. 12. Mean and standard deviation of frame size and derivative terms as a function of quantization scaleq for scene 384
from The Terminatorencoded with GoP pattern 7.

a) Average Sizes of Frame Types:Due to the fixed GoP structure for the encoding, the different frame

types Intra (I), Predicted (P), and Bi–directional predicted(B) occur at fixed positions in the encoded video.

The differences of the mean frame sizes of the three frame types thus contribute to the variability of the

encoded video. In Figs. 13,14, and 15, we illustrate the mean frame sizes by frame type for the scenes

from Football,Star Wars IV, andThe Terminator.

We observe that the difference between the different frame types is more pronounced in the low motion

scene 384 than in the high motion scene 441. In addition, we observe that the pronouncedCoVmax

observed in scene 384 is located in the region where the mean sizes of the two predicted frame types

begin to remain roughly constant compared to the intra codedframe types. For scene 441, where we do

not observe a pronounced hump in the VD curve, we do not observe such behavior, as the mean frame

sizes of all three frame types constantly decrease as the quantization scale increases.

The previous observations were made based on the mean frame type sizes without regard of their

contribution to the total video traffic. In Figs. 16, 17, and18 we plot the fraction of the total video traffic

that is from a specific frame type.

We observe that in scene384 the fraction of encoded video data that is stored in the different frame

types decreases for the two predicted frame types, reaches aminimum where theCoVmax is located on the

quantization scale, and slightly increases afterwards. Inthe high motion scene fromThe Terminator, we do

not observe such behavior. Instead, the fractions of data stored in each frame type remain approximately

constant.

b) Variabilities of Sizes of Frame Types:In addition to the mean sizes, the variability of the sizes

of the different frame types (measured asCoV ) influences the VD curve characteristics. In Figures 19,

20, and 21 we plot the coefficients of variation of the different frame types for scenes fromFootball, Star

Wars IV, andThe Terminator.

From the plots shown here we observe that the I frame variability is lower than the variability of the

predicted frame types. We also observe that for P frames the maximum variability typically decreases from

motion class I to V. We furthermore observe that the overallCoVmax of the scene is mainly governed by
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the P and B frames.

C. Impact of Different Quantization Scales for Different Frame Types on VD Characteristics

In this section we examine the impact of different quantization scalesq for the different frame types.

We denoteqI , qP , andqB, for the quantization scales used for I, P, and B frames, respectively. Initially,

we consider a constant offset between the quantization scales, specifically,qP = qI + 5 andqB = qP + 5

for qI = 5, 6, . . . , 20. We plot the resulting VD curves for the scenes fromFootball, Star Wars IV, The

Terminator, and the test sequences in Figure 22. We observe that with these different quantization scales,

the variability is overall steadily increasing with increasing video quality. This behavior is in contrast

to the hump behavior observed in Figs. 1 and 2 for identical quantization scales for the different frame

types. We also observe that with both, identical and different quantization scales, motion class I has by far

the highest variability and motion class V has the smallest variability, with the variabilities of the other

motion classes lying in between. In addition, we observe that the frame size variabilities with different

quantization scales are higher than with identical quantization scales. This is because with the larger

quantization scales for the P and B frames, these frames havenow even smaller sizes compared to the I

frame sizes, which results in an overall increased variability of the frame sizes.

Next, we examine the impact of the magnitude of the differences between the quantization scales for

the different frame sizes. Specifically, we consider the differences 1, 3, 5, 7, and 10 (i.e.,qP = qI + 1,

qP = qI + 3, qP = qI + 7, andqP = qI + 10, and analogously forqB). In Figs. 23, 24, and 25 we plot

the resulting VD curves for the different motion classes I toV and scenes from all three movies. We

observe that with larger differences of the quantization scales, the variability increases significantly for

higher video quality. The general level of the variability ishigher for the low motion scenes than for the

high motion scenes, which corroborates our earlier observations. In addition we note the difference in

the VD behavior for low and high motion scenes, i.e., the increase in the frame quantization differences

results in an almost exponentially increasing VD curve for high motion scenes, whereas the VD curve for

low motion scenes becomes linearly increasing.
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Fig. 13. Mean frame sizes by frame type for scenes fromFootball encoded with GoP pattern 7.
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Fig. 14. Mean frame sizes by frame type for scenes fromStar Wars IVencoded with GoP pattern 7.



17

0

20000

40000

60000

80000

100000

120000

140000

160000

0 5 10 15 20 25 30

M
ea

n 
si

ze
 b

y 
fr

am
e 

ty
pe

 [b
it]

Quantization scale

I frame
P frame

All
B frame

a) X, XI , XP , andXB for scene 384 (MC I)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 5 10 15 20 25 30

M
ea

n 
si

ze
 b

y 
fr

am
e 

ty
pe

 [b
it]

Quantization scale

I frame
P frame

All
B frame

b) X, XI , XP , andXB for scene 462 (MC II)

0

20000

40000

60000

80000

100000

120000

140000

160000

0 5 10 15 20 25 30

M
ea

n 
si

ze
 b

y 
fr

am
e 

ty
pe

 [b
it]

Quantization scale

I frame
P frame

All
B frame

a) X, XI , XP , andXB for scene 628 (MC III)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 5 10 15 20 25 30

M
ea

n 
si

ze
 b

y 
fr

am
e 

ty
pe

 [b
it]

Quantization scale

I frame
P frame

All
B frame

b) X, XI , XP , andXB for scene 262 (MC IV)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 5 10 15 20 25 30

M
ea

n 
si

ze
 b

y 
fr

am
e 

ty
pe

 [b
it]

Quantization scale

I frame
P frame

All
B frame

b) X, XI , XP , andXB for scene 441 (MC V)

Fig. 15. Mean frame sizes by frame type for scenes fromThe Terminatorencoded with GoP pattern 7.
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Fig. 16. Fractions of frame types for scenes fromThe Terminatorencoded with GoP pattern 7.
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Fig. 19. Coefficient of variationCoVq for different frame types forFootball scenes.
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Fig. 21. Coefficient of variationCoVq for different frame types forThe Terminatorscenes.
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Fig. 23. Different magnitudes of differences between quantization scales for different frame types,qP = qI + 1, qP = qI + 3,
qP = qI + 5, qP = qI + 7, andqP = qI + 10 for Football.
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Fig. 24. Different magnitudes of differences between quantization scales for different frame types,qP = qI + 1, qP = qI + 3,
qP = qI + 5, qP = qI + 7, andqP = qI + 10 for Star Wars.
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Fig. 25. Different magnitudes of differences between quantization scales for different frame types,qP = qI + 1, qP = qI + 3,
qP = qI + 5, qP = qI + 7, andqP = qI + 10 for The Terminator.
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D. Impact of Different GoP Patterns on VD Characteristics

In this section we examine the impact of different GoP patterns on the VD curve. In Figs. 26, 27, and

28 we plot the VD curves for the motion classes I, III, and V forscenes fromFootball for the GoP patterns

defined in Table II. In Figs. 29, 30, and 31 we plot the scenes withmotion classes I, II, and III fromStar

Wars IV, and in Figs. 32, 33, and 34 for scenes fromThe Terminator. We employ identical quantization

scales for all frame types. We observe that the VD curves for the medium motion activity scene from
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Fig. 26. Effect of different GoP patterns for motion class I scene from Football.

The Terminatorare representative of the curves for the low and medium motion activity scenes. For the

high motion scenes, the different GoP patterns have an overall negligible impact on the VD curves.

We observe from Fig. 33 that lengthening the GoP results in lower variability. This is primarily due

to the decreased influence of the always large sized I frames, as the GoP includes more frames. By

comparing the curves in Figs. 33 (a), (b), (c), and (d) we observe that introducing more B frames into

the GoP pattern results in general in a minor reduction of thevariability.

E. Effect of Frame Aggregation (Traffic Smoothing) on VD Characteristics

In this section we study the effect of frame aggregation, i.e., the smoothing of the video traffic over

multiple frames as defined in (6). Note that all the preceding results were obtained for an aggregation
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Fig. 27. Effect of different GoP patterns for motion class III scene from Football.

level of a = 1, i.e., by considering individual frames. We now consider a range of aggregation levelsa

from 1 through 36. Throughout this section we consider GoP pattern 7 and apply the same quantization

scaleq to all frame types. In Fig. 35 we plot the VD curves for the MC I toMC V scenes fromFootball

for different aggregation levelsa. Similarly, we plot the VD curves forStar Wars IVandThe Terminator

in Figs. 36 and 37, respectively We observe that the variability is greatly reduced by smoothing the

frames over an increasing numbera of frames. With an increase froma = 1 to 3 frames, the differences

between the I and P frames on the one hand, and the B frames on the other hand, are smoothed out. As

a result the maximum variability is reduced from 1.633 to 0.853 for scene 384 and reduced from 0.373

to 0.186 for scene 441. Overall, our results indicate that smoothing over three frames approximately cuts

the variability in half.

When the aggregation level is increased further to one GoP (i.e., a = 12 with the considered GoP

pattern 7), we observe again a decrease in the variability toabout one half compared to an aggregation

of three frames. This is because the significant frame size differences between the I frames and the

P frames are smoothed out by the aggregation. If the aggregation level a is further increased from a

single GoP to multiple GoPs there is typically a smaller reduction in variability, which diminishes with
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Fig. 28. Effect of different GoP patterns for motion class V scene from Football.

increasing aggregation levela. In summary, we find that the video traffic variabilitywithin a given scene

is approximately cut in half by smoothing over 3 frames (i.e., the I or P frame and the two adjacent B

frames in the considered GoP pattern 7). Smoothing over one GoP further cuts the variability roughly in

half.

F. Effect of Scene Concatenation

In this section we examine the traffic variability acrossmultiple scenes. Towards this end, we concatenate

all five scenes from a given movie into one video segment and plot the VD curve for the thus obtained

video segment for different frame aggregation levelsa for the five scenes fromFootball, Star Wars IV,

and The Terminatorin Figs. 35, 36, and 37, respectively. We observe that the variability is reduced by

smoothing over 3 frames. Smoothing over one GoP reduces the variability a little further. However, in

contrast to the above results for individual scenes, the reduction in variability is relatively small for the

video segment consisting of concatenated scenes. For an aggregation level ofa = 24 frames, for instance,

we observe from Fig. 37 that the individual scenes give a maximum variability smaller than 0.2, yet we

observe from Fig. 44 that the maximum variability of the concatenated scenes is approximately 0.75. This

high variability is mainly due to the variability of the frame sizes from scene to scene.
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d) Scene 274, GoP patterns 10 and 11.

Fig. 29. Effect of different GoP patterns for motion class I scene from Star Wars IV.

Interestingly, we also observe from the comparison of Fig. 44with Fig. 37 that the VD curves

for individual scenes flatten out as the aggregation levela increases, whereas the VD curve for the

concatenation of scenes retains a pronounced hump and relatively steep slope even for large aggregation

levels. This is due to the behaviors of the mean frame sizes andthe standard deviation of the frames sizes

which when evaluated over the segment of concatenated scenes give pronounced slopes of the VD curve

(11).

Next, we consider the VD curves of the entire one-hour long excerpts fromStar Wars, The Terminator,

and Football, which we plot in Figs. 41, 42, and 43 for the frame aggregationlevel a = 1, the GoP

aggregation levela = 12, and aggregation levels of multiple GoPs. We observe again the characteristic

hump behavior of the VD curve, indicating that the behaviorial trends observed in Fig. 44 for the

concatenation of 5 scenes extend to the concatenation of several hundred scenes in a 1-hour video. We

observe also that the GoP smoothing tends to slightly shift the peak in the VD curve to higher quality

levels. Overall, the GoP smoothing of the long videos roughly cuts the variability in half, compared to the

individual scenes where GoP smoothing roughly cut the variability down to a quarter (cf. Fig. 37). This

indicates that video traffic smoothing is quite effective in reducing the traffic variability within a given
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Fig. 30. Effect of different GoP patterns for motion class III scene from Star Wars IV.

scene. On the other hand, traffic smoothing is less effective in reducing the traffic variability of a long

video consisting of several scenes with distinct content characteristics. It appears hence beneficial to pay

attention to the scene structure of the video when streamingsmoothed video.

We finally examine the effect of considering PSNR values of the luminance as well as the chrominance

components in assessing the video quality. We demonstrate that jointly considering luminance and chromi-

nance PSNR values does not affect the overall tendencies and characteristic behaviors of the VD curve

and the statistical multiplexing/utility. The only change is a scaling of the (horizontal) quality axis in the

various plots. To illustrate this effect we plot in Figs. 44 and 45 the VD curve of the concatenated scenes

from The Terminatorand the entire video. We plot these VD curves using two different quality metrics on

a common dB scale:(i) the PSNR values of the luminance component (denoted byPSNR-Y in the figures)

as used in the paper, and(ii) a 4:1:1 weighing of the PSNR values of the luminance component and the

two chrominance components (denoted byPSNR-YUVin the figures); the 4:1:1 weighing is inspired by

the 4:1:1 chroma subsampling in the videos. We observe from the plots that independent of the considered

quality metric, the VD curves exhibit the characteristic hump behavior. The different quality metrics only

scale the curves in the horizontal direction. The specific scaling in the figures is due to the chrominance
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d) Scene 632, GoP patterns 10 and 11.

Fig. 31. Effect of different GoP patterns for motion class V scene from Star Wars IV.

component having somewhat larger PSNR values than the luminance component for low quality levels,

as the quality level increases this difference in the PSNR values diminishes.

Overall, we note that considering the PSNR values of the luminance component, as is common in

video studies, captures the main effects and characteristics of the VD curve and the resulting statistical

multiplexing/utility behaviors and is therefore a reasonable choice for our study.
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Fig. 32. Effect of different GoP patterns for motion class I scene from The Terminator.
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Fig. 33. Effect of different GoP patterns for motion class III scene from The Terminator.
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Fig. 34. Effect of different GoP patterns for motion class V scene from The Terminator.
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Fig. 35. Effect of frame aggregation (smoothing) onCoVq for Football scenes.
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Fig. 36. Effect of frame aggregation (smoothing) onCoVq for Star Wars IVscenes.



39

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 25  30  35  40  45  50

C
oV

ag
g

PSNR

a=1
a=3

a=12
a=24
a=36

a) Scene 384 (MC I).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 25  30  35  40  45  50

C
oV

ag
g

PSNR

a=1
a=3

a=12
a=24
a=36

b) Scene 462 (MC II).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 25  30  35  40  45  50

C
oV

ag
g

PSNR

a=1
a=3

a=12
a=24
a=36

c) Scene 628 (MC III).

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 25  30  35  40  45  50  55

C
oV

ag
g

PSNR

a=1
a=24
a=3

a=12

d) Scene 262 (MC IV).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 25  30  35  40  45  50

C
oV

ag
g

PSNR

a=1
a=3

a=12
a=24
a=36

e) Scene 441 (MC V).

Fig. 37. Effect of frame aggregation (smoothing) onCoVq for The Terminatorscenes.
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Fig. 38. Effect of frame aggregation (smoothing) onCoVq

for concatenated scenes (298, 299, 557, 184, and 336) from
Football.
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Fig. 40. Effect of frame aggregation (smoothing) onCoVq for
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V. VD A PPROXIMATION FRAMEWORK

In this section, we introduce a piecewise approximation framework for the VD curve. The purpose of

the piecewise approximation is to estimate the VD curve for the entire range of quantization scales from

sample encodings for a small number of quantization scales.

A. Piecewise Approximation Model

Our method employs piecewise power curve fitting for the estimation of the relationships between

(i) size of encoded video frame and quantization scale, (ii) standard deviation of size of encoded video

frame and quantization scale, and (iii) PSNR of encoded and subsequently decoded frame and quantization

scale. Given the estimation of these three relationships, the approximated VD curve can be calculated. Our

power curve fitting method is inspired by [7], [8], where similar techniques are employed to approximate

rate-distortion curves.

Let q denote a quantization scale setting for which the encoded video data is available (i.e., interpolation

points or samples) and̃q denote the quantization scale settings for which we use the approximation

framework to estimate the values needed for the calculationof the VD values (i.e., intermediate points).

The power curve representation of an arbitrary functionf(q) (e.g., mean, standard deviation, or PSNR)

for a quantization scale settingq is given as

f(q) = α · qβ . (13)

Between a set of two consecutive interpolation pointsqi andqj we calculate the parametersα andβ as

αi,j =
f(qi)

qβ
i

andβi,j = log qi

qj

f(qi)

f(qj)
. (14)

The estimated values between the interpolation pointsqi andqj are then given as

f(q̃) = αi,j · (q̃)
βi,j , whereqi < q̃ < qj . (15)

We consider three different levels of estimation. On theaggregatedlevel, we estimate the mean frame

size X q̃, standard deviationσq̃, and mean PSNR valueQq̃ from the given interpolation points. On the

frame level, we first estimate the individual frame sizesX q̃
n and the corresponding frame qualitiesQq̃

n for

the intermediate quantization scale settingsq̃. From the thus estimated frame size and quality values we

calculate the (estimated) mean, standard deviation, and PSNRvalues as given in Eqs. (1), (2), and (8) for

eachq and intermediatẽq. Thirdly, we consider themacroblocklevel, where we estimate the size of each

individual macroblocki, i = 0, . . . , M − 1, of framen asyq̃
n,i. We estimate the frame overhead of frame

n asδq̃
n, with

δq
n = Xq

n −
M−1
∑

i=0

yq
n,i (16)

for the given interpolation points. The frame sizes of themacroblocklevel are then calculated as

X q̃
n =

M−1
∑

i=0

yq̃
n,i + δq̃

n. (17)
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From these frame sizes we determine the coefficient of variation as in the two previous levels, but use

the frame level quality estimation for the VD curve estimation.

Intuitively, the accuracy of the piecewise power curve fitting approach varies with the number of

available interpolation points, i.e., more available encodings yield better approximations. We follow the

reasoning in [8] and assume in the following that extremely high or extremely low quantization scale

settings, i.e.,q < 5 or q > 25, will most likely not be needed for general applications. Wesubsequently

focus in our evaluation only on the region of5 ≤ q ≤ 25. We consider three different numbers of available

interpolation points as outlined in Table V and examine their suitability for an approximation of the VD

TABLE V

INTERPOLATION POINTS FOR THE PIECEWISE POWER CURVE ESTIMATION.

Samples Interpolation points (qi)

2 q1 = 5, q2 = 25
3 q1 = 5, q2 = 15, q3 = 25
4 q1 = 5, q2 = 10, q3 = 17, q4 = 25

curve. We base our evaluation on the common GoP structure (i.e., pattern 7 in Table II) and uniform

quantization scale settings for all frame types.

B. VD Approximation Results

In this section we present the VD approximation results for the individual scenes fromFootball, Star

Wars IV, andThe Terminatorfor all three scenarios specified in Table V. In the following,we illustrate the

approximation for (i) the coefficient of variation as function of the approximatedquality, (i) the coefficient

of variation as function of the quantization scale, (iii) the mean frame size, (iv) the frame size variance,

and (v) the mean frame quality asPSNR for the aggregatedlevel. In Figs. 46, 47, 48, 49, and 50 the

approximation results for the scenes fromFootball are illustrated. Similarly, the results forStar Wars IV

andThe Terminatorare illustrated in Figs. 51, 52, 53, 54, 55 and Figs. 56, 57, 58, 59, 60.



44

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

26 27 28 29 30 31 32 33 34 35 36

C
oV

PSNR

Original
2 Samples
3 Samples
4 Samples

a) Trace based approximation for CoV andPSNR.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

5 10 15 20 25

C
oV

Quantization Scale

Original
2 Samples
3 Samples
4 Samples

b) Trace based approximation for CoV.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

5 10 15 20 25

M
ea

n

Quantization Scale

Original
2 Samples
3 Samples
4 Samples

c) Trace based approximation for mean frame size.

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

5 10 15 20 25

V
ar

Quantization Scale

Original
2 Samples
3 Samples
4 Samples

d) Trace based approximation for frame size variation.

26

27

28

29

30

31

32

33

34

35

36

5 10 15 20 25

P
S

N
R

Quantization Scale

Original
2 Samples
3 Samples
4 Samples

e) Trace based approximation for meanPSNR.

Fig. 46. Aggregatedlevel approximation results for scene298 (MC I) from Football .
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Fig. 47. Aggregatedlevel approximation results for scene299 (MC II) from Football .
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Fig. 48. Aggregatedlevel approximation results for scene557 (MC III) from Football .
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Fig. 49. Aggregatedlevel approximation results for scene184 (MC IV) from Football .
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Fig. 50. Aggregatedlevel approximation results for scene336 (MC V) from Football .
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Fig. 51. Aggregatedlevel approximation results for scene274 (MC I) from Star Wars IV.
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Fig. 52. Aggregatedlevel approximation results for scene117 (MC II) from Star Wars IV.
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Fig. 53. Aggregatedlevel approximation results for scene115 (MC III) from Star Wars IV.
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Fig. 54. Aggregatedlevel approximation results for scene165 (MC IV) from Star Wars IV.
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Fig. 55. Aggregatedlevel approximation results for scene632 (MC V) from Star Wars IV.
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Fig. 56. Aggregatedlevel approximation results for scene384 (MC I) from The Terminator.
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Fig. 57. Aggregatedlevel approximation results for scene462 (MC II) from The Terminator.
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Fig. 58. Aggregatedlevel approximation results for scene628 (MC III) from The Terminator.
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Fig. 59. Aggregatedlevel approximation results for scene262 (MC IV) from The Terminator.
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Fig. 60. Aggregatedlevel approximation results for scene441 (MC V) from The Terminator.
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We immediately observe that the approximation with only twosamples of the encodings does not capture

the VD behavior at all. We furthermore observe that even withfour interpolation points, the approximation

does not capture the VD behavior for most scenes very well. Thefit for the more pronounced hump in the

VD curve for the low motion scenes is visibly worse than for the high motion scenes. In addition we note

that for the medium to high qualities, the estimation yieldsa better result and follows the more linear slope

closer. From the evaluation of the individual components of the VD curves we observe that for three and

four interpolation points the approximations for the individual statistics, namely mean frame size, frame

size variance, and mean frame quality (PSNR) are close to the original values. We compare the previous

results for theaggregatedlevel in the following with the results for theframe level approximations in

Figs. 61, 62, 63, 64, and 65 for scenes fromFootball; in Figs. 66, 67, 68, 69, 70 for scenes fromStar

Wars IV; and in Figs. 71, 72, 73, 74, 75 for scenes fromThe Terminator.
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Fig. 61. Frame level approximation results for scene298 (MC I) from Football .
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a) Trace based approximation for CoV andPSNR.
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Fig. 62. Frame level approximation results for scene299 (MC II) from Football .
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Fig. 63. Frame level approximation results for scene557 (MC III) from Football .
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a) Trace based approximation for CoV andPSNR.
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Fig. 64. Frame level approximation results for scene184 (MC IV) from Football .
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a) Trace based approximation for CoV andPSNR.
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Fig. 65. Frame level approximation results for scene336 (MC V) from Football .
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Fig. 66. Frame level approximation results for scene274 (MC I) from Star Wars IV.
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Fig. 67. Frame level approximation results for scene117 (MC II) from Star Wars IV.
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Fig. 68. Frame level approximation results for scene115 (MC III) from Star Wars IV.
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a) Trace based approximation for CoV andPSNR.
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Fig. 69. Frame level approximation results for scene165 (MC IV) from Star Wars IV.
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a) Trace based approximation for CoV andPSNR.
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Fig. 70. Frame level approximation results for scene632 (MC V) from Star Wars IV.
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Fig. 71. Frame level approximation results for scene384 (MC I) from The Terminator.
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a) Trace based approximation for CoV andPSNR.
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Fig. 72. Frame level approximation results for scene462 (MC II) from The Terminator.
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a) Trace based approximation for CoV andPSNR.
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Fig. 73. Frame level approximation results for scene628 (MC III) from The Terminator.
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a) Trace based approximation for CoV andPSNR.
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Fig. 74. Frame level approximation results for scene262 (MC IV) from The Terminator.
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Fig. 75. Frame level approximation results for scene441 (MC V) from The Terminator.
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We observe that for most scenes the differences between theaggregatedand theframe level approxi-

mations is only minor. In both cases, the fit between the estimated VD curve and the real VD curve is

better for the region of higher PSNR values, as previously observed on theaggregatedlevel. We also

observe that the frame level approximation gives approximately the same performance as the aggregate

level approximation. We furthermore observe that the individual statistics (i.e., frame size mean and

standard deviation, and PSNR quality) are approximated very well with both aggregate and frame level

approximation for a small number of samples. The approximation of the typically highly non-linear VD

curve appears to pose a particular challenge.

In Figs. 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, and90 we plot the approximation at the

macroblocklevel. In addition we calculate the coefficient of correlation between the approximated and

the real statistics as in Eqn. 10 and the mean squared error (MSE)for all three approximation levels. The

results are given in Tables VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, and

XX.

Similar to the two other levels, the VD approximation with twointerpolation points gives a poor fit.

We observe however, that with three interpolation points the fit becomes fairly good, and becomes even

closer with four interpolation points. We conclude that themacroblocklevel yields the best approximation

for a given number of sample points.
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Fig. 76. Macroblock level approximation results for scene298 (MC I) from Football .

TABLE VI

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE298WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.9078 0.9893 0.9888 0.1151 0.0121 0.0063

σ2 0.9786 0.9917 0.9974 2.2057e+014 7.1976e+013 1.6691e+013
X 0.9939 0.9977 0.9980 481702.6713 104399.7190 54121.5672
PSNR 0.9997 0.9998 0.9999 0.0054 0.0015 0.0005

Frame CoV 0.9821 0.9909 0.9899 0.0210 0.0046 0.0048
σ2 0.9953 0.9989 0.9993 5.4204e+013 9.4109e+012 3.0180e+012
X 0.9983 0.9978 0.9981 46065.0784 53460.3440 44732.8947
PSNR 0.9996 0.9998 0.9999 0.0055 0.0015 0.0005

MB CoV 0.9849 0.9885 0.9901 0.0113 0.0045 0.0031
σ2 0.9966 0.9994 0.9994 3.9252e+013 3.1585e+012 1.9164e+012
X 0.9953 0.9949 0.9977 147613.0230 180179.8715 65281.8491
PSNR 0.9996 0.9998 0.9999 0.0055 0.0015 0.0005
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Fig. 77. Macroblock level approximation results for scene299 (MC II) from Football .

TABLE VII

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE299WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.8929 0.9894 0.9914 0.0261 0.0024 0.0010

σ2 0.9864 0.9946 0.9981 8.5423e+013 2.8918e+013 7.6157e+012
X 0.9960 0.9989 0.9990 605441.5634 95010.7475 48050.0164
PSNR 0.9992 0.9996 0.9996 0.0249 0.0071 0.0033

Frame CoV 0.9520 0.9944 0.9920 0.0114 0.0009 0.0008
σ2 0.9955 0.9989 0.9994 3.0656e+013 5.9759e+012 1.9733e+012
X 0.9984 0.9992 0.9990 211002.9508 39973.5182 43279.8265
PSNR 0.9993 0.9996 0.9996 0.0236 0.0069 0.0033

MB CoV 0.9794 0.9946 0.9944 0.0049 0.0003 0.0003
σ2 0.9970 0.9995 0.9995 2.1273e+013 2.5206e+012 1.3134e+012
X 0.9987 0.9984 0.9989 64086.3566 91442.7848 57144.5720
PSNR 0.9993 0.9996 0.9996 0.0236 0.0069 0.0033
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Fig. 78. Macroblock level approximation results for scene557 (MC III) from Football .

TABLE VIII

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE557 WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.6538 0.9370 0.9825 0.0301 0.0036 0.0007

σ2 0.9974 0.9987 0.9990 1.6126e+012 5.5411e+011 3.1518e+011
X 0.9734 0.9910 0.9970 942154.5169 215401.4534 51754.4875
PSNR 0.9997 0.9997 0.9996 0.0017 0.0019 0.0018

Frame CoV 0.7209 0.9653 0.9863 0.0235 0.0019 0.0005
σ2 0.9988 0.9994 0.9995 6.3659e+011 1.3570e+011 1.0603e+011
X 0.9773 0.9934 0.9977 795969.9326 154592.9675 37575.2991
PSNR 0.9997 0.9997 0.9996 0.0017 0.0019 0.0018

MB CoV 0.8592 0.9797 0.9893 0.0124 0.0005 0.0003
σ2 0.9995 0.9991 0.9995 1.8763e+011 2.5344e+011 1.1353e+011
X 0.9891 0.9972 0.9987 373890.7352 53796.4218 16632.0050
PSNR 0.9997 0.9997 0.9996 0.0017 0.0019 0.0018
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Fig. 79. Macroblock level approximation results for scene184 (MC IV) from Football .

TABLE IX

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE184WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.8798 0.9793 0.9911 0.0058 0.0008 0.0002

σ2 0.9926 0.9966 0.9990 4.0099e+013 1.5463e+013 3.8768e+012
X 0.9967 0.9989 0.9993 566049.5371 123830.0066 44081.8381
PSNR 0.9993 0.9994 0.9993 0.0121 0.0068 0.0051

Frame CoV 0.9311 0.9915 0.9924 0.0033 0.0003 0.0001
σ2 0.9971 0.9994 0.9998 1.6103e+013 3.1519e+012 6.1213e+011
X 0.9977 0.9992 0.9993 388284.7900 74254.9970 34981.5910
PSNR 0.9993 0.9994 0.9993 0.0115 0.0066 0.0050

MB CoV 0.9773 0.9953 0.9947 0.0011 0.0000 0.0001
σ2 0.9992 0.9999 0.9999 4.5641e+012 2.4823e+011 1.4959e+011
X 0.9993 0.9995 0.9994 86311.6645 22459.4637 26337.0295
PSNR 0.9993 0.9994 0.9993 0.0115 0.0066 0.0050
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Fig. 80. Macroblock level approximation results for scene336 (MC V) from Football .

TABLE X

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE336 WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.9487 0.9919 0.9910 0.0007 0.0001 0.0000

σ2 0.9873 0.9970 0.9989 3.1275e+012 5.8393e+011 1.0965e+011
X 0.9989 0.9994 0.9994 246785.5237 80152.4159 39786.7247
PSNR 0.9994 0.9994 0.9993 0.0051 0.0059 0.0055

Frame CoV 0.9711 0.9937 0.9912 0.0004 0.0001 0.0000
σ2 0.9953 0.9991 0.9993 1.2627e+012 1.6619e+011 5.6977e+010
X 0.9990 0.9994 0.9994 213749.5419 70513.2477 37900.8983
PSNR 0.9994 0.9994 0.9993 0.0051 0.0059 0.0055

MB CoV 0.9876 0.9963 0.9943 0.0002 0.0000 0.0000
σ2 0.9980 0.9996 0.9994 5.5510e+011 6.4481e+010 4.3498e+010
X 0.9995 0.9996 0.9995 50923.9406 33257.4683 28794.1210
PSNR 0.9994 0.9994 0.9993 0.0051 0.0059 0.0055
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Fig. 81. Macroblock level approximation results for scene274 (MC I) from Star Wars IV.

TABLE XI

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE274WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.4848 0.9314 0.9576 0.0901 0.0098 0.0033

σ2 0.9959 0.9970 0.9980 1.5017e+012 9.1510e+011 4.5321e+011
X 0.9615 0.9899 0.9958 1220250.9867 207923.3227 57131.8500
PSNR 0.9981 0.9997 0.9997 0.0359 0.0039 0.0019

Frame CoV 0.5755 0.9624 0.9593 0.0735 0.0057 0.0028
σ2 0.9974 0.9987 0.9988 8.3190e+011 2.4998e+011 1.8991e+011
X 0.9681 0.9930 0.9967 1002019.4664 138130.3653 41558.3004
PSNR 0.9981 0.9997 0.9997 0.0357 0.0039 0.0019

MB CoV 0.8196 0.9786 0.9725 0.0414 0.0009 0.0012
σ2 0.9986 0.9988 0.9990 3.2765e+011 1.9081e+011 1.8106e+011
X 0.9879 0.9980 0.9982 395256.9521 23209.2210 17175.2000
PSNR 0.9981 0.9997 0.9997 0.0357 0.0039 0.0019
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d) Trace based approximation for frame size variation.

Fig. 82. Macroblock level approximation results for scene117 (MC II) from Star Wars IV.

TABLE XII

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE117 WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.8837 0.9892 0.9900 0.0086 0.0007 0.0006

σ2 0.8716 0.9237 0.9521 2.4377e+011 8.4185e+010 4.0639e+010
X 0.9368 0.9889 0.9969 353409.5823 39689.7312 8060.1276
PSNR 0.9936 0.9928 0.9938 0.0267 0.0306 0.0169

Frame CoV 0.9115 0.9899 0.9880 0.0068 0.0007 0.0007
σ2 0.9113 0.9375 0.9648 1.6416e+011 6.4205e+010 2.7618e+010
X 0.9540 0.9924 0.9975 258184.9568 26529.8308 5737.2708
PSNR 0.9936 0.9929 0.9938 0.0267 0.0303 0.0169

MB CoV 0.9752 0.9587 0.9643 0.0029 0.0012 0.0010
σ2 0.9037 0.9236 0.9552 1.5142e+011 7.8475e+010 3.6313e+010
X 0.9905 0.9980 0.9972 73110.5820 2575.3346 4554.2534
PSNR 0.9936 0.9929 0.9938 0.0267 0.0303 0.0169
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Fig. 83. Macroblock level approximation results for scene115 (MC III) from Star Wars IV.

TABLE XIII

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE115WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.7688 0.9812 0.9795 0.0132 0.0008 0.0005

σ2 0.9996 0.9995 0.9996 7.9676e+010 1.0035e+011 8.8578e+010
X 0.9882 0.9978 0.9987 312308.0059 35193.5517 13160.4002
PSNR 0.9984 0.9985 0.9985 0.0178 0.0163 0.0094

Frame CoV 0.7916 0.9825 0.9796 0.0121 0.0007 0.0005
σ2 0.9993 0.9999 0.9999 2.3450e+011 2.0469e+010 1.6506e+010
X 0.9923 0.9986 0.9989 205885.3443 19556.6460 9467.4826
PSNR 0.9984 0.9985 0.9985 0.0173 0.0161 0.0093

MB CoV 0.9456 0.9825 0.9803 0.0048 0.0002 0.0003
σ2 0.9994 0.9999 0.9998 2.3388e+011 2.2076e+010 2.7925e+010
X 0.9987 0.9991 0.9991 34332.0665 6652.9219 6574.7703
PSNR 0.9984 0.9985 0.9985 0.0173 0.0161 0.0093
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Fig. 84. Macroblock level approximation results for scene165 (MC IV) from Star Wars IV.

TABLE XIV

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE165WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.4541 0.8635 0.9571 0.0070 0.0011 0.0002

σ2 0.9992 0.9994 0.9994 1.1809e+011 7.7145e+010 8.7895e+010
X 0.9707 0.9909 0.9971 1336948.0082 284345.3317 61978.5827
PSNR 0.9982 0.9992 0.9995 0.0324 0.0097 0.0027

Frame CoV 0.5032 0.9099 0.9643 0.0062 0.0007 0.0002
σ2 0.9989 0.9991 0.9997 1.6882e+011 1.1682e+011 3.4538e+010
X 0.9725 0.9919 0.9974 1251289.0775 249873.2863 54061.5554
PSNR 0.9982 0.9992 0.9995 0.0322 0.0097 0.0027

MB CoV 0.7475 0.9520 0.9755 0.0032 0.0002 0.0001
σ2 0.9980 0.9983 0.9996 3.9319e+011 2.8365e+011 5.5770e+010
X 0.9839 0.9956 0.9985 727088.4480 118462.1985 25328.8165
PSNR 0.9982 0.9992 0.9995 0.0322 0.0097 0.0027
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Fig. 85. Macroblock level approximation results for scene632 (MC V) from Star Wars IV.

TABLE XV

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE632WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.6888 0.8913 0.9828 0.0022 0.0005 0.0001

σ2 0.9974 0.9980 0.9996 6.5688e+010 4.2216e+010 5.6635e+009
X 0.9710 0.9911 0.9972 408099.5896 86594.2989 19148.0985
PSNR 0.9979 0.9989 0.9996 0.0167 0.0051 0.0015

Frame CoV 0.6971 0.8855 0.9831 0.0021 0.0005 0.0000
σ2 0.9974 0.9979 0.9996 6.6320e+010 4.6078e+010 6.3330e+009
X 0.9719 0.9911 0.9973 394595.8025 85313.6359 18352.9577
PSNR 0.9978 0.9989 0.9996 0.0170 0.0052 0.0015

MB CoV 0.8594 0.9364 0.9843 0.0012 0.0003 0.0000
σ2 0.9983 0.9987 0.9994 3.6286e+010 2.2167e+010 1.3666e+010
X 0.9828 0.9943 0.9982 235489.4584 47641.9119 9435.5042
PSNR 0.9978 0.9989 0.9996 0.0170 0.0052 0.0015
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Fig. 86. Macroblock level approximation results for scene384 (MC I) from The Terminator.

TABLE XVI

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE384WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.6515 0.9629 0.9757 0.1002 0.0091 0.0032

σ2 0.9914 0.9937 0.9981 1.0797e+013 7.4575e+012 1.9101e+012
X 0.9858 0.9977 0.9981 476980.0219 42191.9574 19863.8921
PSNR 0.9935 0.9991 0.9998 0.1508 0.0154 0.0026

Frame CoV 0.7608 0.9844 0.9764 0.0686 0.0038 0.0025
σ2 0.9949 0.9974 0.9993 6.3397e+012 3.0954e+012 6.5636e+011
X 0.9911 0.9985 0.9980 299785.4444 17328.2805 18236.9374
PSNR 0.9935 0.9991 0.9998 0.1504 0.0154 0.0026

MB CoV 0.9203 0.9773 0.9718 0.0359 0.0015 0.0021
σ2 0.9944 0.9978 0.9997 7.3306e+012 2.7035e+012 2.0951e+011
X 0.9975 0.9952 0.9966 66032.9372 60897.6148 42339.3178
PSNR 0.9935 0.9991 0.9998 0.1504 0.0154 0.0026
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Fig. 87. Macroblock level approximation results for scene462 (MC II) from The Terminator.

TABLE XVII

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE462WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.8515 0.9711 0.9844 0.0170 0.0023 0.0006

σ2 0.9914 0.9973 0.9994 4.1375e+012 1.0445e+012 1.5292e+011
X 0.9939 0.9976 0.9987 136010.1819 35774.7426 10386.4111
PSNR 0.9992 0.9994 0.9996 0.0103 0.0055 0.0034

Frame CoV 0.8896 0.9811 0.9856 0.0126 0.0015 0.0005
σ2 0.9918 0.9981 0.9997 3.9325e+012 7.4172e+011 7.1325e+010
X 0.9962 0.9985 0.9989 81502.6656 19671.8690 7631.6823
PSNR 0.9992 0.9994 0.9996 0.0104 0.0055 0.0034

MB CoV 0.9887 0.9753 0.9755 0.0019 0.0007 0.0009
σ2 0.9952 0.9994 0.9998 2.5147e+012 2.0404e+011 3.2223e+010
X 0.9984 0.9985 0.9987 10894.1578 12484.3441 12304.3418
PSNR 0.9992 0.9994 0.9996 0.0104 0.0055 0.0034
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Fig. 88. Macroblock level approximation results for scene628 (MC III) from The Terminator.

TABLE XVIII

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE628WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.5226 0.9175 0.9573 0.0067 0.0009 0.0003

σ2 0.9957 0.9982 0.9996 2.4137e+012 8.8814e+011 1.5177e+011
X 0.9935 0.9983 0.9990 347590.5979 60033.3799 19477.8726
PSNR 0.9994 0.9997 0.9996 0.0126 0.0034 0.0028

Frame CoV 0.5237 0.9222 0.9579 0.0067 0.0008 0.0003
σ2 0.9944 0.9979 0.9997 3.1022e+012 1.0348e+012 1.4641e+011
X 0.9943 0.9986 0.9991 305425.7669 49897.9149 17041.2591
PSNR 0.9994 0.9997 0.9996 0.0124 0.0033 0.0028

MB CoV 0.8485 0.9495 0.9761 0.0025 0.0002 0.0001
σ2 0.9966 0.9988 0.9998 1.9420e+012 5.7141e+011 5.6415e+010
X 0.9988 0.9994 0.9993 59036.7299 10033.8056 9594.3275
PSNR 0.9994 0.9997 0.9996 0.0124 0.0033 0.0028
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Fig. 89. Macroblock level approximation results for scene262 (MC IV) from The Terminator.

TABLE XIX

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE262WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.4553 0.8981 0.9146 0.0023 0.0003 0.0001

σ2 0.9961 0.9985 0.9997 2.1264e+013 6.7437e+012 1.1015e+012
X 0.9991 0.9994 0.9993 122974.0110 34925.3184 30662.3918
PSNR 0.9990 0.9995 0.9994 0.0289 0.0084 0.0048

Frame CoV 0.3423 0.8816 0.9162 0.0029 0.0003 0.0001
σ2 0.9933 0.9975 0.9996 3.6336e+013 1.1088e+013 1.5110e+012
X 0.9992 0.9994 0.9993 91628.5594 29865.2514 29670.0293
PSNR 0.9991 0.9995 0.9994 0.0281 0.0083 0.0048

MB CoV 0.7809 0.9136 0.9518 0.0011 0.0001 0.0001
σ2 0.9944 0.9982 0.9998 3.0184e+013 7.8525e+012 8.7530e+011
X 0.9990 0.9992 0.9993 49500.4273 38951.5499 31724.8877
PSNR 0.9991 0.9995 0.9994 0.0281 0.0083 0.0048
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Fig. 90. Macroblock level approximation results for scene441 (MC V) from The Terminator.

TABLE XX

COEFFICIENT OF CORRELATION ANDMEAN SQUARED ERROR (MSE) FOR SCENE441WITH GOP PATTERN 7.

Level Metric Coefficient of Correlation MSE
Interpolation Points Interpolation Points

2 3 4 2 3 4
Trace CoV 0.1410 0.8525 0.8956 0.0009 0.0001 0.0000

σ2 0.9983 0.9995 0.9995 3.3767e+012 6.1688e+011 5.9996e+011
X 0.9976 0.9993 0.9994 576562.9865 98889.5527 46267.2788
PSNR 0.9983 0.9989 0.9990 0.0483 0.0203 0.0078

Frame CoV 0.0625 0.8633 0.9049 0.0010 0.0001 0.0000
σ2 0.9975 0.9995 0.9995 5.1874e+012 5.1890e+011 5.2947e+011
X 0.9977 0.9993 0.9994 555474.3411 90799.7775 43743.4701
PSNR 0.9983 0.9989 0.9991 0.0477 0.0201 0.0077

MB CoV 0.4725 0.8913 0.9191 0.0006 0.0000 0.0000
σ2 0.9982 0.9996 0.9996 3.4889e+012 3.5556e+011 3.7193e+011
X 0.9988 0.9995 0.9995 264669.8110 47232.9464 31524.1059
PSNR 0.9983 0.9989 0.9991 0.0477 0.0201 0.0077
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VI. VD I MPLICATIONS FORSTATISTICAL MULTIPLEXING

In this section we provide a methodology for assessing the statistical multiplexing gain from the

VD characteristics and examine the implications of the ratevariability-distortion (VD) characteristics

of encoded video on statistical multiplexing, which is a keyelement in many video traffic management

schemes.

First we augment the frame size notation defined in Section III-Afrom an individual video stream to

multiple different streams. We letj, j = 1, . . . , J , index the ongoing streams. We letXq
n(j) denote the

size (in bit) of video framen of streamj encoded with quantization scaleq and assume that all streams

have the same number of framesN . In order to fix ideas in describing our methodology we adopt the

video traffic model with random phase shifts defined in [57]. In this model the frame size is modelled by

a steady state random variable, whereby the distribution ofthe random variable is given by the histogram

of the frame sizes. In our context we letXq(j) be a random variable denoting the frame size of stream

j encoded with quantization scaleq. The distribution ofXq(j) is given by

πq
j (x) = P (Xq(j) = x) =

1

N

N
∑

n=1

1(Xq
n(j)=x), (18)

where 1(A) denotes the indicator function, which is 1 ifA is true and 0 otherwise. We letT denote

the frame period (display time) of a given video frame in seconds. In order not to obscure our main

points we consider an elementary frame based real-time video streaming scenario, where each individual

video frame is transmitted at the constant bit rateXq
n(j)/T during one frame period of lengthT and

the streams are statistically multiplexed onto a bufferless link, as illustrated in Figure 91. Loss occurs at

Link bandwidth C

streams

lossP ε

Server

J

Fig. 91. Bufferless statistical multiplexing model

the link whenever the aggregated traffic from the ongoing video streams
∑J

j=1 Xq(j)/T exceeds the link

bandwidthC. We measure the loss in terms of the long run fraction of frameperiods during which loss

occurs, i.e., we define the loss probability as

Ploss = P





1

T

J
∑

j=1

Xq(j) > C



 (19)

and require that the loss probability be less than some minuscule ǫ.
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In order to determine whether a set ofJ streams can be supported without violating the statisticalquality

of service requirement that the loss probability be less than ǫ we need to determine the loss probability.

This could be done using discrete event simulation, which however tends to be computationally very

demanding. We outline two alternative approaches—a central limit based approach and a large deviations

based approach—which require relatively little computational effort and give accurate results. The Central

Limit approach models the aggregate traffic load as a Normal random variable with mean
∑J

j=1 X̄q(j)

and variance
∑J

j=1 σ2
q (j) and approximates the loss probability by the probability that a Normal random

variable with the specified mean and variance exceeds the linkcapacityC · T in one frame period. Note

that for each video streamj, the meanX̄q(j) and the varianceσ2
q (j) of the frame size as a function of

the quantization scaleq can be obtained from the traditional rate-distortion curvein conjunction with the

rate variability-distortion curve of the video encoding. Also note that by using piece-wise approximation

models, see Section V, a few sample encodings of each of the multiplexed videos are sufficient to obtain the

frame size mean and variance for the range of quantization scalesq and thus to assess the loss probability

at a range of quantization scales. The outlined Central Limit based approach is computationally very

simple and requires only the rate-distortion and rate variability curves of the encoding, however, it tends

to slightly underestimate the loss probability especiallyin the range of very small loss probabilities, as

we will study numerically in Section VII-A.

The large deviations based approach is very accurate for the entire range of loss probabilities, but

requires a more specific characterization of the frame sizes.In particular, the large deviations approach

requires the logarithmic moment generation function of theframe sizeµXq(j)(s) = lnE[es·Xq(j)], where

s denotes the real valued transform variable. For each of the multiplexed video streams the function

µXq(j)(s) can be explicitly expressed in terms the histogram (18), as

µXq(j)(s) = ln

xmax
∑

x=xmin

πq
j (x) · esx, (20)

wherexmin andxmax denote the smallest and largest frame size, respectively. The individual logarithmic

moment generating functions are then used to compute the logarithmic moment generating function of the

aggregate traffic asµXq(s) =
∑J

j=1 µXq(j)(s), which in turn is employed to compute the large deviations

estimate of the loss probability as

Ploss =
1

s∗
√

2πµ′′
Xq(s∗)

e−s∗CT+µXq (s∗). (21)

In (21), s∗ is the unique solution toµ′
Xq(s) = CT , and the prime denotes derivative with respect tos.

This computation of the large deviations estimate can be computationally demanding due to the direct

computation of the logarithmic moment generating functionfor the differents values from the histogram.

In addition, when assessing the stream admissibility and utility for a range of quantization scalesq for

different streamsj, the direct computation requires the histogram of the framesizes for each quantization

scaleq for each streamj.

The computation of the large deviations estimate can be made computationally more efficient as we

describe next. Following the general series expansion technique developed in [58, p. 206] we can expand
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the logarithmic moment generating function of streamj encoded with quantization scaleq as

µXq(j)(s) =
K

∑

k=1

cq
k(j) · s

k. (22)

The series expansion coefficients can be expressed as

cq
k = aq

k(j) −
1

k

k−1
∑

i=1

i · ak−i(j) · c
q
i (j), (23)

where

aq
i (j) =

1

i!

∑

x

πq
j (x) · xi. (24)

We found in our numerical work that a relatively small numberof K = 15 coefficients is sufficient for

a good series approximation, leading to a significantly reduced computational effort when computing the

moment generating function for differents for a given (fixed) quantization scaleq. To make the calculation

of the moment generating function for a range of different quantization scalesq more efficient, we use

the following technique. We obtain the coefficientscq
k(j), k = 1, . . . , K, for a small number of sample

encodings for different quantization scalesq for each videoj. For a given videoj and coefficient indexk,

we then construct a piecewise approximation of the coefficient cq
k(j) across the full range of quantization

scalesq, using the approximation techniques described in Section V.

A. Numerical Results

In this section we present numerical examples to illustratethe use of the methodology described in the

preceding section as well as the typical characteristics ofthe multiplexing behavior as a function of the

video quality. For the illustrative examples presented here we use theStar Warsvideo sequence, which

has been widely used in video multiplexing studies, for all ongoing video streams. We also present the

results for our two additional movies, namelyFootball and The Terminator. Each stream has its own

independent random phase, which models the random start time and user interactivity for the stream. We

denoteJmax for the maximum number of simultaneous video streams that can be supported by the link

while maintaining the loss constraint, which we verify withthe LD approach. In Figs. 92, 94, and 96 we

plot the maximum number of supported connectionsJmax as a function of the PSNR quality. The videos

are encoded with GoP pattern 7 with the same quantization scale for all frame types and the link capacity

is set toC = 50 Mbps. We plot the maximum number of supported streams for peak rate allocation

(ǫ = 0) and two non-zeroǫ, namelyǫ = 10−6 and ǫ = 10−4, as well as mean rate allocation, which

is obtained by dividing the link bandwidth by the average bitrate of the video. We consider both the

frame based real-time streaming of the video as well as the GoP based streaming of the video, where

the frames are aggregated over a GoP (a = 12) and transmitted at a constant rate over the duration of

one GoP. This GoP smoothing reduces the variability of the video traffic at the expense of an increase

in the delay of the video streaming by roughly two GoP durations. We observe that the introduction of a

small loss probabilityǫ results in a significant increase in the maximum number of supported streams over

the peak rate allocation. This increase appears to be especially significant for video streams with lower

PSNR quality; and we will examine this effect shortly in more detail. We also observe that the increase
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in the number of permitted streams for a given increase in theloss requirement appears particularly

significant for low PSNR qualities. Increasing the permitted loss probability fromǫ = 10−7 to ǫ = 10−3

for frame based streaming at 31 dB of PSNR video quality, for instance, allows for approximately 50

additional streams. We also observe that GoP streaming allows generally for more streams than frame

based streaming, especially for low video qualities.

To further examine the statistical multiplexing effect fordifferent video qualities and different permitted

loss probabilitiesǫ, we examine the statistical multiplexing gain achieved by allowing for an ǫ ≥ 0. The

statistical multiplexing gain is defined as

g(ǫ) =
Jmax(ǫ) − Jmax(0)

Jmax(0)
, (25)

whereJmax(0) denotes the maximum number of supported connections for lossless transmission (i.e., peak

rate allocation). In Figs. 93, 95, and 97 we plot the multiplexing gain g(ǫ) as a function of the PSNR

quality for frame based streaming with differentǫ. We observe that the multiplexing gain as a function

of the PSNR video quality exhibits a “hump”, similar to the corresponding VD curves (see Figs. 41, 42,

and 43). The explanation for this behavior of the multiplexing gains is as follows. At very low quality and

at very high quality, the variability of the video traffic is relatively low (compared to the quality region

where the traffic variability peaks). For the lower variability traffic, the peak rate allocation allows for

a relatively larger number of streams, i.e., a higher long run average utilization of the link (defined as

the sum of the average bit rates of the supported streams divided by the link bandwidth). For the higher

variability streams, the utilization is lower. When statistically multiplexing with some non-zero permitted

loss probabilityǫ, the statistical multiplexing effect (i.e., the effect of temporarily high bit rates in some

streams being compensated for by the temporarily low bit rates in other streams) becomes stronger when

more streams are multiplexed, i.e., for lower stream quality. As a result, the statistical multiplexing gain

is small for high quality streams because relatively few streams can be supported and the utilization with

peak rate allocation is already relatively high. The statistical multiplexing gain is the highest in the region

where the VD curve peaks since the number of streams with statistical multiplexing is relatively high and

the utilization with peak rate allocation is the lowest. Forvery low quality streams, the number of streams

with statistical multiplexing is higher, but so is the number of streams with peak rate allocation, resulting

a somewhat smaller statistical multiplexing gain. In summary, we conclude from the results shown here

that the highest multiplexing gains are achieved around thepeak of the VD curve, i.e., in the region of

high variability.
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Fig. 92. Maximum number of supported streamsJmax as
a function of PSNR quality forFootball, and link bandwidth
C = 50 Mbps.
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Fig. 93. Multiplexing gaing(ǫ) as a function of PSNR video
quality for Football and bandwidthC = 50 Mbps.

0

100

200

300

400

500

600

700

800

900

28 30 32 34 36 38 40

J m
ax

PSNR

Mean rate
GoP 10-3
GoP 10-7

Frame 10-3
Frame 10-7

GoP peak rate
Frame peak rate

Fig. 94. Maximum number of supported streamsJmax as a
function of PSNR quality forStar Wars, and link bandwidth
C = 50 Mbps.
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Fig. 95. Multiplexing gaing(ǫ) as a function of PSNR video
quality for Star Warsand bandwidthC = 50 Mbps.
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Fig. 96. Maximum number of supported streamsJmax as
a function of PSNR quality forThe Terminator, and link
bandwidthC = 50 Mbps.
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Fig. 97. Multiplexing gaing(ǫ) as a function of PSNR video
quality for The Terminatorand bandwidthC = 50 Mbps.
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VII. N ETWORK UTILITY : ASSESSMENTMETHODOLOGY AND TYPICAL CHARACTERISTICS

In this section we provide a methodology for assessing the utility (revenue) earned from the video

streaming service and examine its typical characteristicsfor open-loop encoded video, We letQq(j)

denote the average quality of video streamj encoded with quantization scaleq. Note that if the utility

depends only on the number of supported streams (irrespective of their video quality), then the revenue

is maximized by streaming the lowest qualityarg minq{Qq(j)} for each streamj. On the other hand,

if we assume that the utility for the content provider is maximized by the highest multiplexing gain,

then it would be preferable to stream the videos withqmax, i.e., with the highest variability. These initial

observations do not consider the quality of the streamed video.

In a more realistic scenario, the revenue from the video streaming is likely determined by the number

of supported streams as well as their quality. To capture this effect we adopt utility functions which

are widely employed in microeconomics to relate the preferences of consumers (in our case clients) to

specific goods or services (in our case the average video qualitiesQq(j)). In our context the utility function

models the value (utility) that a video stream of a given quality has for a user. A widely employed type of

utility function in microeconomics are functions with diminishing marginal utility. With such functions,

the marginal increment in the utility of a good for a fixed increment in the quality of the good decreases

as the absolute quality level increases. Such functions appear also appropriate in our context because a

client currently receiving a low quality video (encoded with a large quantization scale) typically perceives

a noticeable increase in quality if the video quality is slightly increased (the quantization scale reduced).

On the other hand, for a client receiving a high quality video, a slight further increase in quality is typically

barely noticeable [59]. A typical utility function [43], [48] reflecting this behavior is given by

Uq(j) = 1 + u(j) · log10[1 + Qq(j) − Qmin(j)], (26)

where u(j) is a tuning parameter quantifying the value of the quality increases to the user receiving

streamj. Note that the minimum quality video (with the largest quantization scale) is assigned a utility

of one in this definition. We assume that the minuscule losses at the multiplexer do not deteriorate the

video quality; the incorporation of the impact of the losseson the video quality is left as future work, as

outlined in Section VIII. The total network utility earned from the video streaming as a function of the

vector of quantization scalesq = (q(1). . . . , q(J)), is obtained by summing the utilities for the individual

supported streams, i.e.,

UJ(q) =
J

∑

j=1

Uq(j), (27)

whereby the techniques from Section VI are used to assess whether a set ofJ streams can be supported

for a permissible loss probability. The functionU(q) can now be maximized to determine the largest

network utility value and the quantization scales attaining that value.

A. Numerical Results

For simplicity of exposition we consider in our illustrative numerical work a homogeneous streaming

scenario where all ongoing streams have the same utility parameteru(j) = u and are obtained from the
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Football, Star Wars, or Terminatorvideo with random phase shifts. In this scenario, the overall network

utility is obtained by multiplying the utility for a given stream by the number of supported streams, i.e.,

UJ(q) = J · Uq(j), and we refer toJmax · Uq(j) as the maximum network utility.

In Fig. 98 we plot the maximum network utility as a function of the PSNR video quality for different

parametersu in the utility function definition and for different permitted loss probabilitiesǫ for Star Wars.

The Jmax values calculated with the large deviations approach and plotted in Figs. 92, 94, and 96 are

used. The bandwidth is set toC = 50 Mbps. We observe from Fig. 98(a) that the maximum network
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Fig. 98. Maximum network utility as a function of PSNR video quality forStar Wars.

utility exhibits a characteristic hump similar to the VD curve and the statistical multiplexing gain. We

furthermore observe from Fig. 98(b) that for larger utility parameteru, i.e., when more value is assigned

to the video quality, the peak in the maximum utility tends todrift towards higher video qualities. In other

words, the largest network utility value is achieved by statistically multiplexing fewer streams, but each

stream has a higher quality. Examining Fig. 98(a) more closely, we observe that higher permitted loss

probabilities and GoP smoothing result in significant increases in the maximum utility, except for very high

PSNR qualities. For a permissible loss probability ofǫ = 10−7, for instance, GoP based streaming gives

approximately 13% higher utility than frame-based streaming around the peak of the maximum utility

curve. Similar results are obtained for the moviesFootball andTerminator, as illustrated in Figs. 99 and

100, respectively.

The results presented so far have used the large deviations approach to determine the admissibility

of a set of streams. In Fig. 101 we plot the maximum network utility obtained when employing the

Normal approximation to determine the stream admissability and compare with the large deviations based

results forStar Wars. We observe that the Normal approximation gives generally fairly accurate results,

especially for the larger permitted loss probabilityǫ = 10−3. For the smaller loss probabilityǫ = 10−7 the

Normal approximation slightly overestimates (by typically less than 5%) the achievable utility. We obtain

similar outcomes for the moviesFootball andTerminatoras illustrated in Figs. 102 and 103. Overall, we

may conclude that the Normal approximation gives a fairly good assessment of the utility. Note that the

Normal approximation requires only the rate-distortion (RD) function and the rate variability-distortion

(VD) function of the encoded video, both of which can be obtained with high accuracy by a piecewise



98

0

100

200

300

400

500

600

700

26 27 28 29 30 31 32 33 34 35 36

U
til

ity

PSNR

Mean rate
GoP 10-3
GoP 10-7

Frame 10-3
Frame 10-7

GoP peak rate
Frame peak rate

(a) Effect of different values forǫ, u = 1.

0

200

400

600

800

1000

1200

1400

1600

1800

26 27 28 29 30 31 32 33 34 35 36

U
til

ity

PSNR

u=10
u=5
u=2
u=1

(b) Effect of different values foru, ǫ = 10−7, frame-based streaming.

Fig. 99. Maximum network utility as a function of PSNR video quality forFootball.
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Fig. 100. Maximum network utility as a function of PSNR video quality forTerminator.

linear approximation based on a few sample encodings.

VIII. C ONCLUSION

We have examined the relationships between video quality, bit rate variability, and the utility from a

streaming service with statistical multiplexing for open-loop encoded video. We have found that the rate

variability-distortion (VD) curve of open-loop encoded video exhibits typically a characteristic “hump”

behavior and have investigated how this hump behavior is influenced by the different motion levels in

the video content, the video encoding parameters and traffic smoothing. We have found that the bit rate

variability is the highest and the hump in the VD curve is mostpronounced for low motion video scenes.

We have also found that larger quantization scales for the predictive frame types in MPEG (compared to

the quantization scale for the intra coded frames) and shorter GoP patterns tend to increase the level of

bit rate variability. Furthermore, we have observed that traffic smoothing within a scene is highly effective

in reducing the bit rate variability within the scene, whereas traffic smoothing over a long video is less

effective in reducing the bit rate variability of the video.
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We have described a methodology for assessing the admissibility of a set of video streams on a link

subject to a statistical quality of service criterion and for assessing the utility (revenue) earned by a service

provider when statistically multiplexing video of different quality levels over the link. In summary, the

methodology first determines whether a set of streams can be supported while ensuring a small long run loss

probability. The utility from the supported streams is then computed by adding the utilities corresponding

to the quality levels of the individual streams. Our numerical work for homogeneous streaming scenarios

indicates that the statistical multiplexing gain and the utility as a function of the video quality level typically

exhibit a characteristic “hump” similar to the VD curve. The peaks in these functions are typically in

the vicinity of the quantization scale attaining the peak inthe VD curve. Finally, we have demonstrated

that the Normal approximation which relies on the first and second moment of the video traffic (as a

function of the quality level) is quite accurate in assessing the network utility in the bufferless statistical

multiplexing model.

There are many exciting avenues for future work. One avenue isto incorporate the effect of the lost

video traffic on the video quality, which becomes important for large loss probabilities. To incorporate

the effect of these losses in our utility evaluation, the quality of a stream could be modeled as a function

of both the quantization scaleq and the loss probability limitǫ, i.e., asQǫ
q(j), using for instance the

models studied in [23], [24], [59]–[62]. This adjusted quality Qǫ
q(j) can then be employed in the utility

evaluation, e.g., by using a utility function such as (26).
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