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Video Texture and Motion Based Modeling of Rate
Variability-Distortion (VD) Curves

Geert Van der Auwera, Martin Reisslein, and Lina J. Karam

Abstract—We examine and model the bit rate variability-distor-
tion (VD) curve of -4 Part 2 variable bit rate (VBR) video encod-
ings. The VD curve has important applications for evaluating the
statistical multiplexing of streaming video. We show that the con-
cave VD curve shape at high compression ratios, or equivalently
large quantization scales, is influenced by both the texture and the
motion information. Based on this insight, we first develop a gen-
eral VD curve model by analytically expressing the VD curve in
terms of elementary statistics (mean, variance, covariance) of the
numbers of motion and texture coding bits. In a second step we
develop and validate linear and quadratic models for the elemen-
tary texture and motion bit statistics, whereby the model param-
eters are obtained from only two sample encodings. The texture
and motion bit models are then employed in our general VD curve
model. This work extends our previous work on piecewise models
of the VD curve. The texture and motion based VD model obtained
from two sample encodings has comparable accuracy to a piece-
wise model based on three sample encodings. In addition, the tex-
ture and motion based VD model provides fundamental insights
into how texture and motion affect traffic variability.

Index Terms—Communication systems, -4 Part 2, rate vari-
ability-distortion, statistical multiplexing, variable bit rate, video
coding, video content, video quality, video streaming, video traffic.

I. INTRODUCTION

ARECENT study [1] has documented the concave shape of
the rate variability-distortion (VD) curve of open-loop or

variable bit rate (VBR) -4 Part 2 [2] encoded video and proposed
a crude model for the VD curve. The VD curve is the coefficient
of variation (standard deviation normalized by the mean) of the
frame size (in bits) as a function of the quantization scale or
distortion metric. In [1], the VD curve has been approximated by
a piecewise model. The model is based on up to four encoding
samples corresponding to four different quantization scales. In
addition, this piecewise model does not provide insights into the
properties of the encoded video frames that result in the concave
VD curve shape.

In this study, we build on [1] by examining the underlying
effects leading to the concave VD curve and by developing and
validating a significantly refined VD curve model for encoded
video. More specifically, we first express the VD curve of I-,
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P-, and B-frames in terms of elementary statistics (mean, vari-
ance, covariance) of the numbers of bits required to code the
texture and motion information in the frames. These individual
VD frame models are then combined in a general VD model
for a video sequence. In a second step, we develop and validate
quadratic models for the mean and variance of the texture infor-
mation (bits) in a frame as a function of the quantization scale.
We also develop linear models for the mean and variance of the
motion information (bits) in a frame, thus extending [3] where a
quadratic model was used for the rate-distortion function of the
entire frame size. These linear and quadratic models of the tex-
ture and motion bits are then employed within our general VD
curve model.

In the course of this modeling work, we demonstrate that both
the texture and motion bits make significant contributions to the
overall concave shape of the VD curve. We find that given the
frame size contributions for encodings with only two different
quantization scales, this novel model accurately predicts the VD
curve across a wide range of quantization scales. This is a signif-
icant improvement over the crude model in [1] where encodings
for three or more different quantization scales were required.
The refined VD curve model proposed in this paper not only pro-
vides fundamental insights into how texture and motion in an en-
coded video contribute to its traffic variability, but also provides
a practical method for estimating the VD curve from only two
sample encodings. In addition, the general VD curve model de-
rived in this paper is independent from the linear and quadratic
texture and motion bit models. Other models for the texture and
motion bit statistics can be employed within our general VD
curve model, making it a useful basis for future research.

The VD curve has important applications in evaluating statis-
tical multiplexing, which is often employed in video transport
over networks. For instance, the VD curve is useful for admis-
sion control, i.e., for determining whether a set of video streams
can be transmitted over a link subject to a prescribed loss prob-
ability limit. The VD curve model developed in this paper can
be used to accurately determine the frame size variance for a
range of quantization scales from only two sample encodings.
This VD curve model in turn can be used in conjunction with
the admission control methodology outlined in [1] to assess the
loss probability for a range of quantization scales. Similarly, the
VD curve model can be employed to assess the utility (revenue)
earned from a streaming video service across a range of video
quality levels.

This paper is organized as follows. In Section I-A, we discuss
related work and position our research on the VD curve. Metric
definitions and experimental setup are covered in Section II. The
VD curve modeling principle is introduced in Section III-A. In
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Section III-B we first derive the VD curve models for the I-,
P-, and B-frames. The combined general VD curve model for a
full video sequence is presented in Section III-C. The quadratic
and linear models for the texture and motion bit statistics of
video frames are developed and validated in Sections IV-A and
IV-B. In Section IV-C, the VD curve models for the I-, P-, and
B-frames are validated, and in Section IV-D we evaluate the
full VD model. The sensitivity of choosing the two quantization
scales is analysed in Section V. We summarize our conclusions
in Section VI.

A. Related Work

This study relates most closely to research on the rate-dis-
tortion (RD) characteristics of encoded video and research on
the analysis and modeling of video traffic. The RD characteris-
tics of encoded video give the relationship between the (mean)
bit rate and the video quality (and encoder quantization scale),
see e.g., [4]. RD modeling has been a prolific research area for
many years and a wide variety of modeling approaches have
been examined, ranging from models primarily based on the
source video statistics, e.g., [5], to models primarily based on
interpolating sample points of the RD curve, e.g., [6], as well
as models incorporating analytical and empirical insights, e.g.,
[7], [8]. The RD models are important for rate control in video
coding, e.g., [9], and the allocation of mean bit rates to video
streams for network transport [10], [11]. Our study differs from
the research on the RD characteristics in that we examine the
relationship between the variability of the bit rate and the video
quality (and quantization scale). That is, our focus is on the
second order statistic of the video traffic, whereas the existing
RD studies have focused on the first order statistic of the video
traffic.

Research on the statistical analysis of video traffic and video
traffic models has also received significant interest, see for in-
stance [12]–[18]. These existing works focus on analysing the
statistics of the traffic, which includes the bit rate variability, for
a video encoding with a fixed quality level or quantization scale.
In contrast, in this paper we examine the bit rate variability of the
video as a function of the quality level/quantization scale. A de-
tailed understanding of this bit rate variability-quality level rela-
tionship is important for the design and operation of video trans-
port mechanisms, for individual streams, e.g., [19]–[21], for
multiple streams of a fixed quality level, e.g., [22]–[24], as well
as multiple streams with quality adaptation, see e.g., [25]–[28].
These transport mechanisms typically allocate buffer and band-
width resources and employ dynamic scheduling strategies to
accommodate the video traffic variability. Our study comple-
ments this literature by uncovering and characterizing the fun-
damental relationships between the rate variability produced
by the open-loop encoder and the different quantization scales/
quality levels.

II. METRIC DEFINITIONS AND EVALUATION SETUP

The rate variability-distortion (VD) curve relates the bit rate
variability of an encoded video sequence to its average picture
quality. More specifically, the VD curve relates the coefficient
of variation of encoded frame sizes (number of bits) to
the average picture quality (e.g., peak signal-to-noise ratio or

Fig. 1. Concave VD curves for the movie segment from Star Wars V, encoded
with -4.

Fig. 2. Average picture quality of the movie segment from Star Wars V as a
function of quantization scale q.

PSNR) or the quantization scale . The of the encoded
frame sizes of a given video sequence for a particular quantiza-
tion scale is defined as

(1)

with denoting the standard deviation and the mean of
the frame sizes (in bits) of the encoded video sequence. The
VD curve has a characteristic concave or “hump” shape as de-
picted in Fig. 1, separately for I-, P-, B-frames, and combined
for all frame types for a segment of the movie Star Wars V: The
Empire Strikes Back (1000 QCIF frames). Due to the concave
shape, there exists a quantization scale at which the bit rate
variability reaches a maximum. In Fig. 1, the abscissa contains
the scale and decreases from value 30 to 1. This corresponds to
the increasing average picture quality as is illustrated in Fig. 2,
where the average PSNR is plotted as a function of quantization
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TABLE I
OVERVIEW OF SCENES CLASSIFIED IN 5 MOTION CLASSES

scale . The PSNR is an objective measure of the quality of a
reconstructed video frame with respect to the uncom-
pressed frame and for an frame consisting of
8-bit pixel values is computed as:

(2)

(3)

Other objective video quality metrics exist that correlate better
with the quality perception of a human observer, e.g. VQM [29],
[30]. These metrics can be applied to the reconstructed video
sequences and a transformation curve between and the metric
values can be plotted, as is done for the PSNR in Fig. 2. What-
ever quality metric is applied, it will have a monotonically in-
creasing or decreasing trend from low quality for to
high quality for . Hence, the concave curve shape of the
VD curve will be preserved, although it can be stretched or com-
pressed. The following analysis and conclusions will therefore
also be valid for other quality metrics.

A. Video Scenes Used in Evaluations

In addition to the Star Wars V segment, we employ the same
videos as in [1], namely scenes from two movies, Star Wars IV,
The Terminator, and a Football game, which are summarized
in Table I. All videos are in QCIF format (176 144 pixels).
We used the publicly available scene detection software [31] for
the determination of the scene boundaries. Following [32], the
scenes have been classified according to the level of motion into
five motion classes ranging from motion class I for a low level
of motion, to motion class V for a high level of motion. For
video encoding, we use the same video codec as in [1], namely
the Microsoft v2.3.0 reference implementation of -4 Part 2 [2] in
the simple profile. The group-of-pictures (GoP) structure that is
used in this work consists of twelve frames, namely one I-frame,
three P-frames, and eight B-frames: IBBPBBPBBPBB.

III. TEXTURE AND MOTION BASED VD CURVE MODEL

A. Texture vs. Motion Bits

In this paper, we apply a new modeling approach to the VD
curve. We start from the insight that encoded video frames have
as constituents texture, motion, and syntax bits. In case of the P-
and B-frames, the texture bits represent the encoded prediction
error information that remains after the often imperfect temporal
prediction step in the video encoder. The motion bits represent
side information (motion vectors) about the temporal prediction
step and are required to reconstruct the P- and B-frames. In case
of I-frames, the texture bits represent the actual encoded frame
content. No motion bits are required to reconstruct the I-frames.
The syntax bits assign a meaning to parts of the bit stream, e.g.
to distinguish between texture and motion bits.

At low compression ratios, or equivalently, for small quanti-
zation scales, the motion and syntax bits are negligible com-
pared to the bits required to encode the texture. With higher
compression ratios, i.e., larger quantization scales, the texture
information is significantly reduced. As a result, for large quan-
tization scales, the number of texture bits is comparable to the
motion bits and, therefore, the motion information plays a sig-
nificant role in the bit rate variability. In other words, the con-
cave VD curve shape at high compression ratios is influenced by
the texture information but also by the motion information. We
still consider the syntax bits negligible compared to the texture
and motion bits, since they are more than an order of magnitude
smaller.

This principle is illustrated in Fig. 3 where the average P- and
B-frame sizes are depicted along with the average texture and
motion bits for the Star Wars V segment. We observe that for

, the P texture information is about twice the size of the
motion information and decreases exponentially. For ,
the average number of P texture bits is even smaller than the
number of P motion bits. For B-frames, this point is reached
for . The average I-frame size curve is not shown in this
figure, because it is more than three times larger than the average
P-frame size curve. The I-frame sizes as a function of have an
exponential curve shape as well.
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Fig. 3. Average P- and B-frame texture, motion bits, and total frame sizes as a
function of quantization scale q for the Star Wars V video segment.

B. VD Curve Model for I-, P-, and B-Frames

We denote for the number of texture bits of frame
encoded with quantization scale , and correspondingly

for the number of motion bits. For a sequence
with frames, we let and

respectively denote
the (sample) mean and variance of the number of texture bits,
and we define and analogously to denote the average
and variance of the number of motion bits, respectively. We
let represent the (sample) covariance of the texture
and motion information which is defined as

. We
observe that the sum of the number of texture and motion bits
approximately equals the total frame size, i.e., when we ignore
the syntax bits: . With this approximation,
we can express the for the P- and B-frames as:

(4)

which we refer to as the VD-P and VD-B models. For small
values, the motion bits are negligible compared to the texture
bits and therefore (4) reduces to:

(5)

Equation (5) is applicable to the I-frames as well, since no mo-
tion information is present, and we refer therefore to (5) as the
VD-I model.

C. Combined VD Curve Model for Video Sequences

The next step in the modeling is combining the VD curve
models for the I-, P-, and B-frames into a single VD curve
model. The frame size variabilities expressed by the VD-I,
VD-P, and VD-B models each contribute to the overall vari-
ability of the entire frame sequence. Intuition tells us that the
relative contributions of the I-, P-, and B-frames to the overall
frame size variability depend on the group-of-pictures (GoP)
structure. The GoP structure that is used in this work consists
of twelve frames and is given by: IBBPBBPBBPBB, i.e., one
I-frame, three P-frames and eight B-frames. Denote the I-, P-,
and B-frame fractions by: , , and . The fractions
for our chosen GoP structure are: , ,
and . In the following, we assume there are an
integer number of GoPs in the sequence so that the total
number of frames equals . For a particular quantization
scale , the overall average of frame sizes can therefore be
expressed as follows, with denoting individual total frame
sizes:

(6)

(7)

Hence, the overall average of the frame sizes is the
weighted sum of the averages per frame type (I-P-B)
with weighting coefficients equal to the fractions of each
frame type in the GoP structure. Furthermore, we have

.
To calculate the overall variance, we follow a similar ap-

proach, as detailed in Appendix A, and obtain for the overall
variance for a particular quantization scale :

(8)

We split each of the variance and average terms into texture and
motion contributions. We can easily generalize (7) and (8) for
arbitrary GoP structures by adjusting the coefficients to repre-
sent the fractions of each frame type in the GoP. The general
formula for the VD curve model that combines the variabili-
ties of all frame types, or combined general VD curve model,
is therefore as shown in (9) at the bottom of the page. We can

(9)
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rewrite this expression as a function of the coefficients of vari-
ation of the I-, P-, and B-frames as shown in (10) at the bottom
of the page.

Note that this VD curve model (10) is general in that arbi-
trary models can be employed for the elementary texture and
motion bit statistics (mean, variance, covariance) in (4) and
(5) which are in turn inserted in (10). As an instantiation of
the texture and motion bit models we develop in the following
sections linear and quadratic models for the elementary tex-
ture and motion bit statistics. When these linear and quadratic
model are employed, we are able to show that the complex
concave VD curve shape is the combined result of simpler
linear and quadratic curves.

IV. TEXTURE AND MOTION BIT STATISTICS MODELS

A. Quadratic Models for Texture Bit Statistics and Covariance

In [3], a quadratic rate-distortion model is devised for rate
control and this model was adopted as part of –4 VM5.0. The
model is formulated with a and b as the model parameters:

(11)

In this paper, we employ (11) to model the average number
of texture bits in (4), since the average texture bits as a
function of represent a rate-distortion curve. We also show
that (11) accurately models and is adequate for modeling

. Since the absolute values of the modeled means and
variances vary widely, we assess the modeling accuracy with the
relative RMSE (RRMSE) values, i.e., the RMSE values divided
by the average of the actual data that is modeled on the quantizer
scale interval . The RMSE values are computed
based on the difference between the quadratic models and the
actual values of the average texture bits, texture variances, and
covariances (motion, texture) of the I-, P-, and B-frames.

All model parameters are obtained from the statistics (av-
erage, (co)variance) corresponding to the encodings with quan-
tization scales and . These two values are
chosen because they include the “hump” of the VD curve and
result in a reasonably accurate prediction of the VD curves.
Second, the modeling accuracy in the range is less of
a concern to the application of low to medium bit rate video
streaming, although we will illustrate in Section IV-D that the
VD curve modeling extends towards small or high bit rates as
well. In Section V, we analyse the impact of the two values.
The RRMSE values obtained in the described manner across
all scenes from Table I and the Star Wars V segment are pre-
sented in Table II (ignore the motion related table columns de-
noted by variables with a subscript for now). Overall, we

conclude from the table that the quadratic models match the
average and variance statistics curves for the texture bits well,
while adequately approximating the covariance curves of the P-
and B-frames.

Next, we explain a method for estimating the model pa-
rameters and . Let and represent , , or

corresponding to two quantization scales and .
The quadratic model parameters and from (11) are obtained
by solving the following system of equations:

(12)

The solution to these equations is:

and

(13)

B. Linear Models for Motion Bits Statistics

We observe in Fig. 3 that the average number of motion bits
follows a linear trend as a function of . Hence, we propose a
linear model with and as the model parameters:

(14)

The model parameters can be estimated easily by solving a
system of two equations as before for the quadratic model:

and (15)

The solution to these equations is:

and (16)

Similar to the quadratic models, the linear model parameters
are obtained from the motion bits statistics (average, variance)
corresponding to the encodings with quantization scales

and . The last constituent of (4) to be modeled is
the variance of the motion bits . With reasoning similar to
above, which is detailed in [33], we find that the linear model is
also the most appropriate for .

The RRMSE values for the linear motion bits statistics
models for all scenes from Table I and for the Star Wars V
segment are presented in Table II for the P- and B-frames.
We empirically conclude that the linear models fit the average
and the variance of the number of motion bits well. Graphical

(10)
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TABLE II
RRMSE (%) VALUES FOR QUADRATIC MODELS OF TEXTURE BIT STATISTICS AND COVARIANCE AND LINEAR MODELS OF MOTION BIT STATISTICS

illustrations of the linear and quadratic models, which we can
not include here due to space constraints, are provided in [33].

Now that we have developed the models for the texture and
motion bits statistics, we employ them in the VD-I, VD-P, and
VD-B models from Section III-B and subsequently in the com-
bined VD model from Section III-C.

C. Evaluation of VD Curve Model for I-, P-, and B-Frames

In Section III-B, we developed VD frame models as given by
(4) and (5). The VD-P and VD-B models can be reformulated as
a function of the quantization scale and ten model parameters,
two parameters for each linear and quadratic model:

(17)

(18)

(19)

(20)

(21)

(22)

Analogously, the VD-I model includes four model parameters
and is given by:

(23)

(24)

(25)

From (22) and (25), it is clear that the complex concave VD
curve shape of the individual frame types is the combined result
of simpler linear and quadratic curves for the averages, vari-
ances, and covariances of the texture and motion bits.

In Figs. 4 and 5, the actual VD curves for the P- and B-frames
from the Star Wars V video segment are compared with the VD
models estimated from encoding settings , and
employing (22). The models match the actual curves well for

and capture the concave VD curve shape. The
VD-P and VD-B models are also an accurate representation for
small or equivalently the highest qualities. In Fig. 6, the VD-I
model and the actual VD curve for the I-frames are depicted.
The model matches the VD curve well for . How-
ever, the VD-I model becomes inaccurate for . Table III
enumerates the RRMSE values of the VD-I, VD-P, and VD-B
models corresponding to all video scenes in Table I and the
Star Wars V segment, computed for the quantization scale range

. We empirically conclude that the VD curve
models for the I-, P-, and B-frames offer a good prediction of
the actual VD curves.

In Figs. 7 and 8, the “small ” models (5) for the P- and
B-frames from the Star Wars V segment are depicted (models
use and ). They are adequate approximations
for the respective VD curves in the small range. From this,
it can also be seen that, in the small range, the motion statis-
tics and the covariance do not influence the VD curve shape or
equivalently there is no influence on the bit rate variability. On
the other hand, in the range , the statistics of the
motion bits need to be modeled, as well as the covariance, oth-
erwise the curve based on the texture statistics alone deviates
strongly from the actual VD curve.
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Fig. 4. Comparison of actual VD-P curve with corresponding model.

Fig. 5. Comparison of actual VD-B curve with corresponding model.

Fig. 6. Comparison of actual VD-I curve with corresponding model.

TABLE III
RRMSE (%) VALUES FOR VD CURVE MODELS OF I-, P-, AND B-FRAMES

D. Evaluation of Combined VD Curve Model

Fig. 9 depicts the combined VD model for the Star Wars V
video segment and illustrates that the combined VD curve model
accurately approximates the actual VD curve of this sequence.
In Table IV, we compare the combined VD curve model with
the piecewise approximation model applied in [1] for all scenes
from Table I using the RRMSE. For the piecewise modeling ap-
proach, we present the RRMSE values for approximations ob-
tained from respectively 2, 3, and 4 quantization scales. The
RRMSE values are in all cases significantly lower for the com-
bined VD model as compared to the piecewise model employing
two quantization scales. For ten out of the fifteen video scenes,
the RRMSE values of the combined VD curve model are smaller
than the RRMSE values of the piecewise model obtained from
three quantization scales, and for about half of the scenes the
combined VD curve model outperforms the piecewise RRMSE
values obtained from four scales. We conclude from the overall
mean that the approximation performance of the combined VD
curve model in the quantization scale interval ,
based on quantization scales and , is com-
parable to the piecewise model employing three quantization
scales.

To further investigate the accuracy of the combined model
approach, we compare the models for the average frame size
(7) and standard deviation of the frame size (8) with the cor-
responding piecewise models in Table V. The table gives the
mean RRMSE values across the individual scenes for each of
the motion classes considered in Table IV as well as the RRMSE
for the Star Wars V video sequence (1000 QCIF frames), a
new sequence formed by concatenating all fifteen scenes of
all motion classes (3395 QCIF frames), and an excerpt from the
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Fig. 7. Actual VD-P curve and the “small q” model.

Fig. 8. Actual VD-B curve and the “small q” model.

Fig. 9. VD curve for all frames and the combined VD model for the Star Wars V
fragment.

TABLE IV
COMPARISON BETWEEN PIECEWISE APPROXIMATION MODEL (P)

FROM [1] WITH 2, 3, 4 SAMPLES AND COMBINED VD MODEL CoV
(RRMSE (%) VALUES)

NBC 12 News (3600 CIF frames). We observe that for the in-
dividual scenes, the combined model generally compares favor-
ably with the piecewise approximation approach with three sam-
ples. For the long sequences, which include a variety of scenes
and motion activities and are typical for video streaming ap-
plications, the combined model compares favorably with the
piecewise model with four samples. This indicates that the com-
bined model tends to perform particularly well for video with di-
verse motion activity content. For the diverse content, the larger
number of model parameters that separately capture the elemen-
tary motion and texture frame size statistics and are then com-
bined to model the overall frame size statistics tend to give more
accurate characterizations than the piecewise model which only
considers the total frame sizes and is oblivious to the underlying
video content.

To illustrate the impact of our combined model in an applica-
tion scenario, we consider stream admission control for buffer-
less statistical multiplexing on a link with capacity . We deter-
mine the maximum number of video streams that can be
supported subject to a limit on the loss probability. We con-
sider the Central Limit based admission control outlined in [1],
which models the aggregate traffic load as a Normal random
variable with mean and variance . The
mean and the variance as a function of can be ob-
tained using the corresponding combined or piecewise models
for sequence . We compare the accuracies of the admis-
sion decisions based on the combined and piecewise models in
Table VI for the Star Wars V and concatenated scenes sequences
for a link with , and for the NBC 12 News se-
quence for a link with . We find that the RRMSE
values of the combined modeling are significantly lower than
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TABLE V
COMPARISON BETWEEN PIECEWISE APPROXIMATION (P) AND COMBINED MODEL FOR FRAME SIZE MEAN (R ) AND STANDARD DEVIATION (� )

(RRMSE (%) VALUES)

TABLE VI
COMPARISON OF J ESTIMATES BASED ON PIECEWISE APPROXIMATION (P) WITH 2, 3, AND 4 SAMPLES AND COMBINED MODEL (RRMSE (\%) VALUES) FOR

PERMITTED LOSS PROBABILITIES OF " = 10 AND 10

the values of the piecewise approach using four samples, in-
dicating that the combined model leads to significantly more
accurate admission decisions. This result is consistent with the
significantly more accurate modeling of by the combined
model compared to the piecewise model with four samples and
the comparable accuracy for of the two models for the long
sequences in Table V.

V. SENSITIVITY OF VD CURVE MODEL

In this section, we study the impact of the two quantization
scales, and , that are used for encoding the video sequence
and subsequently for estimating the averages, variances, and co-
variances of the number of texture and motion bits. The linear
and quadratic models that we have developed, could strongly
depend on the choice of and . For example, if and are
not spread out over a significant portion of the quantization scale
range , then it is likely that a modeling error will
be substantial for quantization scales that are located far from
and . Furthermore, the “hump” shape is influenced by both the
motion and the texture statistics, as observed earlier. Therefore,
the motion statistics need to be modeled accurately by choosing
at least one value in the higher compression ratio region (large
). Otherwise, if and would be selected in the low compres-

sion ratio region, then we would estimate motion statistics in a
region where the texture information dominates the motion in-
formation, resulting in a good approximation of the motion bits
statistics in a region where motion information is insignificant
for determining the VD curve shape. From these considerations,
we can already formulate two high-level recommendations for
the choice of and : (i)$ there should be a reasonable interval
size , and (ii)$ at least one should be chosen in
the high compression ratio region where the “hump” is typically
situated.

TABLE VII
QUANTIZATION SCALE INTERVALS �q AND POSSIBLE CHOICES FOR q AND q

An important unknown is the possibility that the choice of
and depends on the motion activity in the video scene, since
the “hump” amplitude is influenced by the motion activity [1].
It seems reasonable to examine whether there could be better
choices for and than 10 and 30 (which we used in the
preceding section), depending on the motion activity, and re-
sulting in more accurate concave VD curve models. In our sen-
sitivity analysis of the choices for and , we examine interval
sizes , and choices for and from the range

, as enumerated in Table VII. These four possible
combinations cover the entire quantization scale interval. The
encodings are followed by estimating the texture and motion
statistics, and subsequently by calculating the VD curve models
for the P-, B-, and I-frames. We have omitted the interval size

, since our experiments indicate that the VD curve
models for are poor approximations of the actual VD
curves for most video scenes.

We have computed the RMSE for each and choice from
Table VII, for each video scene from Table I. The RMSE is com-
puted for the entire range of the quantization scale. Table VIII
enumerates the average RMSE values from each of the five mo-
tion classes. We observe sensitivities to the choice of and
for the low motion activity classes I and II for which the VD
curve hump, which is generally between the middle and upper
end of the range, is most pronounced. A that is removed



646 IEEE TRANSACTIONS ON BROADCASTING, VOL. 53, NO. 3, SEPTEMBER 2007

TABLE VIII
SENSITIVITY ANALYSIS OF QUANTIZATION SCALES USED FOR MODEL PARAMETER ESTIMATION (MEAN RMSE VALUES)

from the upper end of the range, e.g., or 25, tends
to capture the VD behavior somewhat less accurately for low
motion scenes. For the higher motion activity classes III, IV,
and V, we observe relatively little differences between the
and choices. Overall, we observe that the quantization scale
choice and has the lowest average RMSE
across all motion activity classes, and has an average RMSE
lower than 0.1 for each motion class, whereas the other choices
have RMSE values exceeding 0.1 for low motion scenes. From
this sensitivity analysis we can recommend that a good choice
for the two quantization scales is and , and note
that it is generally possible to adapt the and choice to the
scene motion content if scene segmentation is employed.

VI. CONCLUSION

We have modeled the bit rate variability-distortion (VD)
curve for video streaming. The VD curve has a typical concave
or “hump” shape for -4 VBR encodings as previously observed
in [1]. We have refined the coefficient of variation into
the of texture and motion information, since we have
found that the motion information is an important constituent
at medium to high compression ratios. Furthermore, the texture
and motion information statistics are different functions of
the quantization scale and therefore splitting the frame sizes
into texture and motion bits is warranted. Based on elementary
texture and motion bit statistics, we have formulated VD curve
models for the different frame types (I, P, and B) as well as a
general VD curve model for a video sequence.

We modeled the average and variance of the texture bits using
a quadratic model based on the rate-distortion model employed
for rate control in -4 [3]. We also modeled the covariance of
the texture and motion bits by this quadratic model. We mod-
eled the average and the variance of the motion bits by a linear
model. We have thus extended [3] where a quadratic model was
used for the rate-distortion function of the entire frame size. Em-
ploying these linear and quadratic models in our general VD
curve model results overall in good predictions of the actual VD
curves and significantly improves upon the piecewise modeling
in [1]. The texture and motion based VD curve model for two
quantization scales has a modeling accuracy that is comparable
to the piecewise model for three quantization scales.

A future research direction is adapting the VD curve mod-
eling approach developed in this paper to the new H.264/AVC
[34] video encoder. A possible approach is based on the
quadratic rate-distortion model proposed in [35], which em-
ploys the relationship between the new quantization parameter

and the quantization step in the H.264/AVC encoder.

APPENDIX A
EVALUATION OF VARIANCE

With the notation of Section III-C we obtain for the overall
variance for a particular quantization scale :

(26)

(27)

(28)

The terms can clearly be rewritten as the variances of
the three frame types (I-P-B). The terms each sum over
the individual frame sizes about the mean for each frame type,
which is the first central moment. Hence, all terms equal
zero. The last terms with coefficient need some expansion
to simplify them. This results in (8) for the overall variance of
the frame sizes.
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